FeynmanIntegralPrefactor
FeynmanIntegralPrefactor
is an option for
FCFeynmanParametrize
and other functions. It denotes an
implicit prefactor that has to be understood in front of a loop integral
in the usual FeynAmpDenominator
-notation. The prefactor is
the quantity that multiplies the loop integral measure dDq1…dDqn and plays an important
role e.g. when deriving the Feynman parameter representation of the
given integral. Apart from specifying an explicit value, the user may
also choose from the following predefined conventions:
- “Unity” - 1 for each loop
- “Textbook” - (2π)D1 for
each loop.
- “Multiloop1” - iπD/21 for each loop if the integral is Minkowskian, iπD/21 or iπ(D−1)/21 for each loop if
the integral is Euclidean or Cartesian respectively.
- “Multiloop2” - like “Multiloop1” but with an extra e2(4−D)γE for each
loop
The standard value is “Multiloop1”.
See also
Overview, FCFeynmanParametrize.
Examples
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,Γ(ε),{x(1),x(2)}}
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]
Times @@ Most[%]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,Γ(ε),{x(1),x(2)}}
Γ(ε)(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FeynmanIntegralPrefactor -> "Multiloop1"]
Times @@ Most[%]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,Γ(ε),{x(1),x(2)}}
Γ(ε)(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FeynmanIntegralPrefactor -> "Unity"]
Times @@ Most[%]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,iπ2−εΓ(ε),{x(1),x(2)}}
iπ2−εΓ(ε)(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FeynmanIntegralPrefactor -> "Textbook"]
Times @@ Most[%]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,i22ε−4πε−2Γ(ε),{x(1),x(2)}}
i22ε−4πε−2Γ(ε)(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε
FCFeynmanParametrize[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FeynmanIntegralPrefactor -> "Multiloop2"]
Times @@ Most[%]
{(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε,eγεΓ(ε),{x(1),x(2)}}
eγεΓ(ε)(x(1)+x(2))2ε−2(−q2x(1)x(2))−ε
FCFeynmanParametrize[FAD[{p, m}], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FeynmanIntegralPrefactor -> "Multiloop2"]
Times @@ Most[%]
Series[%, {Epsilon, 0, 1}] // Normal // FunctionExpand
{1,−eγεΓ(ε−1)(m2)1−ε,{}}
−eγεΓ(ε−1)(m2)1−ε
εm2+121ε(π2m2+12m2+6m2log2(m2)−12m2log(m2))+m2+m2(−log(m2))