FeynCalc manual (development version)

 

FVLPD

FVLPD[p,mu,n,nb] denotes the positive component in the lightcone decomposition of the Lorentz vector p^{\mu } along the vectors n and nb in D dimensions. It corresponds to \frac{1}{2} \bar{n}^{\mu} (p \cdot n).

If one omits n and nb, the program will use default vectors specified via $FCDefaultLightconeVectorN and $FCDefaultLightconeVectorNB.

See also

Overview, Pair, FVLND, FVLRD, SPLPD, SPLND, SPLRD, MTLPD, MTLND, MTLRD.

Examples

FVLPD[p, \[Mu], n, nb]

\frac{1}{2} \;\text{nb}^{\mu } (n\cdot p)

StandardForm[FVLPD[p, \[Mu], n, nb] // FCI]

\frac{1}{2} \;\text{Pair}[\text{LorentzIndex}[\mu ,D],\text{Momentum}[\text{nb},D]] \;\text{Pair}[\text{Momentum}[n,D],\text{Momentum}[p,D]]

Notice that the properties of n and nb vectors have to be set by hand before doing the actual computation

FVLPD[p, \[Mu], n, nb] FVLND[q, \[Mu], n, nb] // Contract

\frac{1}{4} (n\cdot \;\text{nb}) (n\cdot p) (\text{nb}\cdot q)

FVLPD[p, \[Mu], n, nb] FVLPD[q, \[Mu], n, nb] // Contract

\frac{1}{4} \;\text{nb}^2 (n\cdot p) (n\cdot q)

FCClearScalarProducts[]
SPD[n] = 0;
SPD[nb] = 0;
SPD[n, nb] = 2;
FVLPD[p, \[Mu], n, nb] FVLND[q, \[Mu], n, nb] // Contract

\frac{1}{2} (n\cdot p) (\text{nb}\cdot q)

FVLPD[p, \[Mu], n, nb] FVLPD[q, \[Mu], n, nb] // Contract

0

FCClearScalarProducts[]