FVLND[p,mu,n,nb]
denotes the positive component in the lightcone decomposition of the Lorentz vector p^{\mu } along the vectors n
and nb
in D dimensions. It corresponds to \frac{1}{2} n^{\mu} (p \cdot \bar{n}).
If one omits n
and nb
, the program will use default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, Pair, FVLPD, FVLRD, SPLPD, SPLND, SPLRD, MTLPD, MTLND, MTLRD.
[p, \[Mu], n, nb] FVLND
\frac{1}{2} n^{\mu } (\text{nb}\cdot p)
StandardForm[FVLND[p, \[Mu], n, nb] // FCI]
\frac{1}{2} \;\text{Pair}[\text{LorentzIndex}[\mu ,D],\text{Momentum}[n,D]] \;\text{Pair}[\text{Momentum}[\text{nb},D],\text{Momentum}[p,D]]
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[p, \[Mu], n, nb] FVLND[q, \[Mu], n, nb] // Contract FVLPD
\frac{1}{4} (n\cdot \;\text{nb}) (n\cdot p) (\text{nb}\cdot q)
[p, \[Mu], n, nb] FVLPD[q, \[Mu], n, nb] // Contract FVLPD
\frac{1}{4} \;\text{nb}^2 (n\cdot p) (n\cdot q)
[]
FCClearScalarProducts[n] = 0;
SPD[nb] = 0;
SPD[n, nb] = 2; SPD
[p, \[Mu], n, nb] FVLND[q, \[Mu], n, nb] // Contract FVLPD
\frac{1}{2} (n\cdot p) (\text{nb}\cdot q)
[p, \[Mu], n, nb] FVLPD[q, \[Mu], n, nb] // Contract FVLPD
0
[] FCClearScalarProducts