FeynCalc manual (development version)

FCLoopReplaceQuadraticEikonalPropagators

FCLoopReplaceQuadraticEikonalPropagators[topologies] identifies SFADs and CFADs in topologies that represent mixed quadratic-eikonal propagators, e.g. [p22pq][p^2 - 2 p \cdot q]. Using the information on loop momenta provided by the user the routine will try to rewrite those denominators by completing the square, e.g. as in [(pq)2q2][(p-q)^2 - q^2].

This procedure is useful because one cannot easily determine the momentum flow from looking at quadratic-eikonal propagators as it is possible in the case of purely quadratic ones.

For this to work it is crucial to specify the loop momenta via the LoopMomenta option as well as the kinematics (IntermediateSubstitutions) and the rules for completing the square (InitialSubstitutions) on the purely loop-momentum dependent piece of the propagator (e.g. p122p1p2+p22p_1^2 - 2 p_1 \cdot p_2 + p_2^2 goes to (p1+p2)2(p_1+p_2)^2.

Internally this routine uses ToGFAD and FromGFAD.

See also

Overview, FCTopology, GFAD, FromGFAD, ToGFAD.

Examples

(DataType[#,FCVariable]=True)&/@{gkin,meta,u0b};(\text{DataType}[\#,\text{FCVariable}]=\text{True})\&\text{/@}\{\text{gkin},\text{meta},\text{u0b}\};

topos = {FCTopology[preTopoDia1, {SFAD[{{k2, 0}, {0, 1}, 1}], SFAD[{{k1, 0}, {0, 1}, 1}], 
     SFAD[{{k1 + k2, 0}, {0, 1}, 1}], SFAD[{{0, -k1 . nb}, {0, 1}, 1}], SFAD[{{k2, -(meta*u0b*k2 . nb)}, {0, 1}, 1}], 
     SFAD[{{k1 + k2, -2*gkin*meta*u0b*(k1 + k2) . n}, {0, 1}, 1}], SFAD[{{k1, -2*gkin*meta*k1 . n + meta*u0b*k1 . nb}, 
       {2*gkin*meta^2*u0b, 1}, 1}], SFAD[{{k1, -2*gkin*meta*u0b*k1 . n + meta*u0b*k1 . nb}, {2*gkin*meta^2*u0b^2, 1}, 1}]}, 
    {k1, k2}, {n, nb}, {Hold[SPD][n] -> 0, Hold[SPD][nb] -> 0, Hold[SPD][n, nb] -> 2}, {}]}

{FCTopology(preTopoDia1,{1(k22+iη),1(k12+iη),1((k1+k2)2+iη),1(k1  nb+iη),1(k22meta  u0b(k2  nb)+iη),1((k1+k2)22  gkin  meta  u0b((k1+k2)n)+iη),1(k12+meta  u0b(k1  nb)2  gkin  meta(k1n)2  gkin  meta2  u0b+iη),1(k12+meta  u0b(k1  nb)2  gkin  meta  u0b(k1n)2  gkin  meta2  u0b2+iη)},{k1,k2},{n,nb},{Hold[SPD][n]0,Hold[SPD][nb]0,Hold[SPD][n,nb]2},{})}\left\{\text{FCTopology}\left(\text{preTopoDia1},\left\{\frac{1}{(\text{k2}^2+i \eta )},\frac{1}{(\text{k1}^2+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2+i \eta )},\frac{1}{(-\text{k1}\cdot \;\text{nb}+i \eta )},\frac{1}{(\text{k2}^2-\text{meta} \;\text{u0b} (\text{k2}\cdot \;\text{nb})+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2-2 \;\text{gkin} \;\text{meta} \;\text{u0b} ((\text{k1}+\text{k2})\cdot n)+i \eta )},\frac{1}{(\text{k1}^2+\text{meta} \;\text{u0b} (\text{k1}\cdot \;\text{nb})-2 \;\text{gkin} \;\text{meta} (\text{k1}\cdot n)-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}+i \eta )},\frac{1}{(\text{k1}^2+\text{meta} \;\text{u0b} (\text{k1}\cdot \;\text{nb})-2 \;\text{gkin} \;\text{meta} \;\text{u0b} (\text{k1}\cdot n)-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}^2+i \eta )}\right\},\{\text{k1},\text{k2}\},\{n,\text{nb}\},\{\text{Hold}[\text{SPD}][n]\to 0,\text{Hold}[\text{SPD}][\text{nb}]\to 0,\text{Hold}[\text{SPD}][n,\text{nb}]\to 2\},\{\}\right)\right\}

FCLoopReplaceQuadraticEikonalPropagators[topos, LoopMomenta -> {k1, k2}, 
  InitialSubstitutions -> {
    ExpandScalarProduct[SPD[k1 - k2]] -> SPD[k1 - k2], 
    ExpandScalarProduct[SPD[k1 + k2]] -> SPD[k1 + k2]}, 
  IntermediateSubstitutions -> {SPD[n] -> 0, SPD[nb] -> 0, SPD[n, nb] -> 0}]

{FCTopology(preTopoDia1,{1(k22+iη),1(k12+iη),1((k1+k2)2+iη),1(k1  nb+iη),1((k2meta  u0b  nb2)2+iη),1((k1+k2gkin  meta  u0bn)2+iη),1((k1gkin  metan+meta  u0b  nb2)22  gkin  meta2  u0b+iη),1((k1gkin  meta  u0bn+meta  u0b  nb2)22  gkin  meta2  u0b2+iη)},{k1,k2},{n,nb},{Hold[SPD][n]0,Hold[SPD][nb]0,Hold[SPD][n,nb]2},{})}\left\{\text{FCTopology}\left(\text{preTopoDia1},\left\{\frac{1}{(\text{k2}^2+i \eta )},\frac{1}{(\text{k1}^2+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2+i \eta )},\frac{1}{(-\text{k1}\cdot \;\text{nb}+i \eta )},\frac{1}{((\text{k2}-\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2+i \eta )},\frac{1}{((\text{k1}+\text{k2}-\text{gkin} \;\text{meta} \;\text{u0b} n)^2+i \eta )},\frac{1}{((\text{k1}-\text{gkin} \;\text{meta} n+\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}+i \eta )},\frac{1}{((\text{k1}-\text{gkin} \;\text{meta} \;\text{u0b} n+\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}^2+i \eta )}\right\},\{\text{k1},\text{k2}\},\{n,\text{nb}\},\{\text{Hold}[\text{SPD}][n]\to 0,\text{Hold}[\text{SPD}][\text{nb}]\to 0,\text{Hold}[\text{SPD}][n,\text{nb}]\to 2\},\{\}\right)\right\}