FCFADiracChainJoin
FCFADiracChainJoin[exp]
processes the output of FeynArts
(after FCFAConvert
) with explicit Dirac indices and joins
matrices and spinors into closed chains. This is necessary e. g. for
models with 4-fermion operators, where FeynArts cannot determine the
correct relative signs. When two matrices have a common index but the
positions do not match, as in AijBik, it is assumed that we can take the charge conjugate
transposed of either matrix to obtain, e.g. (CATC−1)jiBik or
(CBTC−1)kiAij.
See also
Overview, DiracChain, DCHN, DiracIndex, DiracIndexDelta, DIDelta, DiracChainCombine, DiracChainExpand, DiracChainFactor, DiracChainJoin, FCCCT.
Examples
Create a closed chain for the 1-loop electron self-energy
-(1/(16 \[Pi]^4)) I el^2 DCHN[Spinor[-Momentum[p, D], me, 1], Dir1]*
DCHN[Spinor[Momentum[q, D], me, 1], Dir2] DCHN[GAD[Lor1], Dir1, Dir3]*
DCHN[GAD[Lor2], Dir2, Dir4] DCHN[me - GSD[k], Dir3, Dir4] FAD[{k, me}, k - q] MTD[Lor1, Lor2]
res = FCFADiracChainJoin[%]
−16π4(k2−me2).(k−q)2iel2gLor1Lor2(γLor1)Dir1Dir3(γLor2)Dir2Dir4(me−γ⋅k)Dir3Dir4(φ(−p,me))Dir1(φ(q,me))Dir2
−16π4(k2−me2).(k−q)2iel2gLor1Lor2(φ(q,me)).γLor2.(−(γ⋅k+me).γLor1).(φ(p,me))
Sometimes the ordering of the spinors is not the one wants to have.
However, we can always transpose the chains to reorder the spinors as we
like, which doesn’t change the final result
SpinorChainTranspose[res, Select -> {{Spinor[__], Spinor[__]}}]
−16π4(k2−me2).(k−q)2iel2gLor1Lor2(φ(−p,me)).γLor1.(me−γ⋅k).γLor2.(φ(−q,me))
Using patterns in the Select
option one can create very
fine-grained criteria for transposing the chains.