DiracChainCombine[exp]
is (nearly) the inverse operation to DiracChainExpand
.
Overview, DiracChain, DCHN, DiracIndex, DiracIndexDelta, DIDelta, DiracChainJoin, DiracChainExpand, DiracChainFactor.
[GSD[q], Dir3, Dir4] FAD[{k, me}])/(2 SPD[q, q]) + 1/(2 SPD[q, q]) FAD[k,
(DCHN{k - q, me}] (-2 DCHN[GSD[q], Dir3, Dir4] SPD[q, q] + 2 DCHN[1, Dir3, Dir4] me SPD[q, q] +
[GSD[q], Dir3, Dir4] (-me^2 + SPD[q, q]))
DCHN
[%] DiracChainCombine
\frac{\left(q^2-\text{me}^2\right) (\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}+2 \;\text{me} q^2 (1)_{\text{Dir3}\;\text{Dir4}}-2 q^2 (\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 k^2.\left((k-q)^2-\text{me}^2\right)}+\frac{(\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 \left(k^2-\text{me}^2\right)}
\frac{\left(\left(q^2-\text{me}^2\right) \gamma \cdot q+2 \;\text{me} q^2-2 q^2 \gamma \cdot q\right){}_{\text{Dir3}\;\text{Dir4}}}{2 q^2 k^2.\left((k-q)^2-\text{me}^2\right)}+\frac{(\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 \left(k^2-\text{me}^2\right)}