Name: Vladyslav Shtabovenko Date: 03/21/16-12:03:55 PM Z


Hi,

sorry for the very late reply.

I don’t really think this is something
related to Mac vs Windows, provided that you and your colleague are
using exactly the same FeynCalc versions and the same codes.

In general, FORM does a much better job avoiding spurious terms that
vanish by the Schouten identity. So you could use FeynCalcFormLink for
that. It is very easy to install

Import[“https://raw.githubusercontent.com/FormLink/formlink/master/\
install.m”]
InstallFormLink[]

Import[“https://raw.githubusercontent.com/FormLink/feyncalcformlink/\
master/install.m”]
InstallFeynCalcFormLink[]

and then on a fresh kernel you can do

«FeynCalc`
«FeynCalcFormLink`

$LeviCivitaSign = -1;
kinematicsreduce = {SP[SubPlus[k]] -> 0, SP[SubMinus[k]] -> 0,
   SP[k12] -> 2 SP[p1, p2], SP[k34] -> 2 SP[p3, p4],
   SP[k12, a_] -> SP[p1, a] + SP[p2, a],
   SP[k34, a_] -> SP[p3, a] + SP[p4, a], SP[p1] -> 0, SP[p2] -> 0,
   SP[p3] -> 0, SP[p4] -> 0, SP[SubPlus[k]] -> 0,
   SP[SubMinus[k]] -> 0};

\[Nu]\[Nu]SMpart1 =
  1/2 DiracTrace[GS[p1].GA[\[Mu]].GS[p2].GA[\[Mu]p]]

\[Nu]\[Nu]SMpart2 =
  1/2 DiracTrace[GS[p3].GA[\[Alpha]].GS[p4].GA[\[Alpha]p]]

\[Nu]\[Nu]SMpart3Bsquared =
  1/8 (DiracTrace[
      GS[SubPlus[k]].GA[\[Mu]].(GS[k12]

res = FeynCalcFormLink[\[Nu]\[Nu]SMpart1.\[Nu]\[Nu]SMpart2.\[Nu]\[Nu]\
SMpart3Bsquared]

(res /. kinematicsreduce) // Simplify // FCE

which gives you

64 SP[p1, SubPlus[
  k]] ((SP[k34, p1] + SP[k34, p2]) SP[p2, p3] -
   SP[p1, p2] SP[p2,
     p3] + (SP[p1, p2] + SP[p2, p2]) (SP[p1, p3] +
      SP[p2, p3]) - (SP[p1, p3] + SP[p2, p3]) (SP[p2, p3] +
      SP[p2, p4]) -
   SP[p2, p3] SP[p3,
     p4] - (SP[p1, p2] + SP[p2, p2]) (SP[p3, p3] +
      SP[p3, p4]) + (SP[p2, p3] + SP[p2, p4]) (SP[p3, p3] +
      SP[p3, p4])) SP[p4, SubMinus[k]]

Cheers,
Vladyslav

Am 23.02.2016 um 15:55 schrieb Mikkel Bjoern:
> I am trying to evaluate the following lines
>
> kinematicsreduce = {SP[SubPlus[k]] -> 0, SP[SubMinus[k]] -> 0,
> SP[k12] -> 2 SP[p1, p2], SP[k34] -> 2 SP[p3, p4],
> SP[k12, a_] -> SP[p1, a] + SP[p2, a],
> SP[k34, a_] -> SP[p3, a] + SP[p4, a], SP[p1] -> 0, SP[p2] -> 0,
> SP[p3] -> 0, SP[p4] -> 0, SP[SubPlus[k]] -> 0,
> SP[SubMinus[k]] -> 0};
>
> \[Nu]\[Nu]SMpart1 =
> 1/2 Tr[GS[p1].GA[\[Mu]].GS[p2].GA[\[Mu]p]] -
> 1/2 Tr[GS[p1].GA[\[Mu]].GS[p2].GA[\[Mu]p].GA[5]];
>
> \[Nu]\[Nu]SMpart2 =
> 1/2 Tr[GS[p3].GA[\[Alpha]].GS[p4].GA[\[Alpha]p]] -
> 1/2 Tr[GS[p3].GA[\[Alpha]].GS[p4].GA[\[Alpha]p].GA[5]];
>
> \[Nu]\[Nu]SMpart3Bsquared =
> 1/8 (Tr[GS[SubPlus[
> k]].GA[\[Mu]].(GS[k12] - GS[k34]).GA[\[Alpha]].GS[SubMinus[
> k]].GA[\[Alpha]p].(GS[k12] - GS[k34]).GA[\[Mu]p]] -
*> Tr[GS[SubPlus[k]].GA[\[Mu]].(GS[k12]