Name: Mikkel Bjoern Date: 02/23/16-03:55:47 PM Z


I am trying to evaluate the following lines

kinematicsreduce = {SP[SubPlus[k]] -> 0, SP[SubMinus[k]] -> 0,
   SP[k12] -> 2 SP[p1, p2], SP[k34] -> 2 SP[p3, p4],
   SP[k12, a_] -> SP[p1, a] + SP[p2, a],
   SP[k34, a_] -> SP[p3, a] + SP[p4, a], SP[p1] -> 0, SP[p2] -> 0,
   SP[p3] -> 0, SP[p4] -> 0, SP[SubPlus[k]] -> 0,
   SP[SubMinus[k]] -> 0};

\[Nu]\[Nu]SMpart1 =
  1/2 Tr[GS[p1].GA[\[Mu]].GS[p2].GA[\[Mu]p]]

\[Nu]\[Nu]SMpart2 =
  1/2 Tr[GS[p3].GA[\[Alpha]].GS[p4].GA[\[Alpha]p]]

\[Nu]\[Nu]SMpart3Bsquared =
  1/8 (Tr[GS[SubPlus[
        k]].GA[\[Mu]].(GS[k12] - GS[k34]).GA[\[Alpha]].GS[SubMinus[
        k]].GA[\[Alpha]p].(GS[k12] - GS[k34]).GA[\[Mu]p]] -
     Tr[GS[SubPlus[k]].GA[\[Mu]].(GS[k12]

\[Nu]\[Nu]result2 =
 Simplify[FCE[
    Contract[\[Nu]\[Nu]SMpart1.\[Nu]\[Nu]SMpart2.\[Nu]\[Nu]\
SMpart3Bsquared ]] //. kinematicsreduce]

I have tried applying // Schouten but the Epsilons remain.

On my colleagues Mac the last line is rather pretty, only involving scalar products, on my PC there are a lot of Epsilon terms as well.

Best regards,
Mikkel