FeynHelpers manual (development version)

PaXC0Expand

PaXC0Expand is an option for PaXEvaluate. If set to True, Package-X function C0Expand will be applied to the output of Package-X.

See also

Overview, PaXEvaluate.

Examples

PaVe[0, 0, 1, {SP[p, p], SP[p, p], m^2}, {m^2, m^2, m^2}]
PaXEvaluate[%]

C001(p2,p2,m2,m2,m2,m2)\text{C}_{001}\left(\overline{p}^2,\overline{p}^2,m^2,m^2,m^2,m^2\right)

04ohum5f7la9s

9m2p4  C0(m2,p2,p2,m2,m2,m2)2(m24p2)2+p6  C0(m2,p2,p2,m2,m2,m2)(m24p2)2m6  C0(m2,p2,p2,m2,m2,m2)2(m24p2)2+3m4p2  C0(m2,p2,p2,m2,m2,m2)(m24p2)23πm2p2(m24p2)211m236(m24p2)+πp43(m24p2)2+19p218(m24p2)7m2p2(p24m2)log(p2(p24m2)p2+2m22m2)3(m24p2)2p2p2(p24m2)log(p2(p24m2)p2+2m22m2)3(m24p2)2+3πm44(m24p2)2+2m4p2(p24m2)log(p2(p24m2)p2+2m22m2)3p2(m24p2)2112ε+112(log(μ2m2)+γlog(4π)+2log(2π))-\frac{9 m^2 \overline{p}^4 \;\text{C}_0\left(m^2,\overline{p}^2,\overline{p}^2,m^2,m^2,m^2\right)}{2 \left(m^2-4 \overline{p}^2\right)^2}+\frac{\overline{p}^6 \;\text{C}_0\left(m^2,\overline{p}^2,\overline{p}^2,m^2,m^2,m^2\right)}{\left(m^2-4 \overline{p}^2\right)^2}-\frac{m^6 \;\text{C}_0\left(m^2,\overline{p}^2,\overline{p}^2,m^2,m^2,m^2\right)}{2 \left(m^2-4 \overline{p}^2\right)^2}+\frac{3 m^4 \overline{p}^2 \;\text{C}_0\left(m^2,\overline{p}^2,\overline{p}^2,m^2,m^2,m^2\right)}{\left(m^2-4 \overline{p}^2\right)^2}-\frac{\sqrt{3} \pi m^2 \overline{p}^2}{\left(m^2-4 \overline{p}^2\right)^2}-\frac{11 m^2}{36 \left(m^2-4 \overline{p}^2\right)}+\frac{\pi \overline{p}^4}{\sqrt{3} \left(m^2-4 \overline{p}^2\right)^2}+\frac{19 \overline{p}^2}{18 \left(m^2-4 \overline{p}^2\right)}-\frac{7 m^2 \sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \log \left(\frac{\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)}-\overline{p}^2+2 m^2}{2 m^2}\right)}{3 \left(m^2-4 \overline{p}^2\right)^2}-\frac{\overline{p}^2 \sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \log \left(\frac{\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)}-\overline{p}^2+2 m^2}{2 m^2}\right)}{3 \left(m^2-4 \overline{p}^2\right)^2}+\frac{\sqrt{3} \pi m^4}{4 \left(m^2-4 \overline{p}^2\right)^2}+\frac{2 m^4 \sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \log \left(\frac{\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)}-\overline{p}^2+2 m^2}{2 m^2}\right)}{3 \overline{p}^2 \left(m^2-4 \overline{p}^2\right)^2}-\frac{1}{12 \varepsilon }+\frac{1}{12} \left(-\log \left(\frac{\mu ^2}{m^2}\right)+\gamma -\log (4 \pi )+2 \log (2 \pi )\right)

The full result is a ConditionalExpression

PaVe[0, 0, 1, {SP[p, p], SP[p, p], m^2}, {m^2, m^2, m^2}]
res = PaXEvaluate[%, PaXC0Expand -> True];

C001(p2,p2,m2,m2,m2,m2)\text{C}_{001}\left(\overline{p}^2,\overline{p}^2,m^2,m^2,m^2,m^2\right)

res // Short
res // Last

112(log(4π)+γ1ε)112log(μ2m2)+6+16log(2π) if m41>0\fbox{$\frac{1}{12} \left(-\log (4 \pi )+\gamma -\frac{1}{\varepsilon }\right)-\frac{1}{12} \log \left(\frac{\mu ^2}{m^2}\right)+\langle\langle 6\rangle\rangle +\frac{1}{6} \log (2 \pi )\text{ if }m^4-\langle\langle 1\rangle\rangle >0$}

m44m2p2>0m^4-4 m^2 \overline{p}^2>0

Use Normal to get the actual expression

(res // Normal)

112(log(4π)+γ1ε)112log(μ2m2)+log(2m2p2+p2(p24m2)2m2)p2(p24m2)(2m47p2m2p4)3(m24p2)2p2+π(3m412p2m2+4p4)43(m24p2)212(m24p2)2(m66p2m4+9p4m22p6)(Li2(((m22p2)m2)m44m2p2m2((m22p2)m2)3m4m44m2p2i(m2+2p2+m44m2p2)ϵ)m2(m24p2)+Li2(m2m44m2p2m2(m22p2)((m22p2)m2)3m4m44m2p2i(m2+2p2+m44m2p2)ϵ)m2(m24p2)Li2(((m22p2)m2)m44m2p2m23m4m44m2p2m2(m22p2)+i(m22p2+m44m2p2)ϵ)m2(m24p2)+Li2(m2m44m2p2m2(m22p2)3m4m44m2p2m2(m22p2)+i(m22p2+m44m2p2)ϵ)m2(m24p2)2  Li2(m2p2p2m44m2p2m2p2p2(p24m2)m44m2p2+i(m2+m44m2p2)ϵ)m2(m24p2)+2  Li2(p2m2+p2m44m2p2m2p2p2(p24m2)m44m2p2+i(m2+m44m2p2)ϵ)m2(m24p2)2  Li2(m2p2p2m44m2p2p2m2+p2(p24m2)m44m2p2i(m44m2p2m2)ϵ)m2(m24p2)+2  Li2(p2m2+p2m44m2p2p2m2+p2(p24m2)m44m2p2i(m44m2p2m2)ϵ)m2(m24p2))11m238p236(m24p2)+16log(2π)\frac{1}{12} \left(-\log (4 \pi )+\gamma -\frac{1}{\varepsilon }\right)-\frac{1}{12} \log \left(\frac{\mu ^2}{m^2}\right)+\frac{\log \left(\frac{2 m^2-\overline{p}^2+\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)}}{2 m^2}\right) \sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \left(2 m^4-7 \overline{p}^2 m^2-\overline{p}^4\right)}{3 \left(m^2-4 \overline{p}^2\right)^2 \overline{p}^2}+\frac{\pi \left(3 m^4-12 \overline{p}^2 m^2+4 \overline{p}^4\right)}{4 \sqrt{3} \left(m^2-4 \overline{p}^2\right)^2}-\frac{1}{2 \left(m^2-4 \overline{p}^2\right)^2}\left(m^6-6 \overline{p}^2 m^4+9 \overline{p}^4 m^2-2 \overline{p}^6\right) \left(-\frac{\text{Li}_2\left(\frac{-\left(\left(m^2-2 \overline{p}^2\right) m^2\right)-\sqrt{m^4-4 m^2 \overline{p}^2} m^2}{-\left(\left(m^2-2 \overline{p}^2\right) m^2\right)-\sqrt{3} \sqrt{-m^4} \sqrt{m^4-4 m^2 \overline{p}^2}}i \left(-m^2+2 \overline{p}^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}+\frac{\text{Li}_2\left(\frac{m^2 \sqrt{m^4-4 m^2 \overline{p}^2}-m^2 \left(m^2-2 \overline{p}^2\right)}{-\left(\left(m^2-2 \overline{p}^2\right) m^2\right)-\sqrt{3} \sqrt{-m^4} \sqrt{m^4-4 m^2 \overline{p}^2}}i \left(-m^2+2 \overline{p}^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}-\frac{\text{Li}_2\left(\frac{-\left(\left(m^2-2 \overline{p}^2\right) m^2\right)-\sqrt{m^4-4 m^2 \overline{p}^2} m^2}{\sqrt{3} \sqrt{-m^4} \sqrt{m^4-4 m^2 \overline{p}^2}-m^2 \left(m^2-2 \overline{p}^2\right)}+i \left(m^2-2 \overline{p}^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}+\frac{\text{Li}_2\left(\frac{m^2 \sqrt{m^4-4 m^2 \overline{p}^2}-m^2 \left(m^2-2 \overline{p}^2\right)}{\sqrt{3} \sqrt{-m^4} \sqrt{m^4-4 m^2 \overline{p}^2}-m^2 \left(m^2-2 \overline{p}^2\right)}+i \left(m^2-2 \overline{p}^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}-\frac{2 \;\text{Li}_2\left(\frac{m^2 \overline{p}^2-\overline{p}^2 \sqrt{m^4-4 m^2 \overline{p}^2}}{m^2 \overline{p}^2-\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \sqrt{m^4-4 m^2 \overline{p}^2}}+i \left(m^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}+\frac{2 \;\text{Li}_2\left(\frac{\overline{p}^2 m^2+\overline{p}^2 \sqrt{m^4-4 m^2 \overline{p}^2}}{m^2 \overline{p}^2-\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \sqrt{m^4-4 m^2 \overline{p}^2}}+i \left(m^2+\sqrt{m^4-4 m^2 \overline{p}^2}\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}-\frac{2 \;\text{Li}_2\left(\frac{m^2 \overline{p}^2-\overline{p}^2 \sqrt{m^4-4 m^2 \overline{p}^2}}{\overline{p}^2 m^2+\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \sqrt{m^4-4 m^2 \overline{p}^2}}i \left(\sqrt{m^4-4 m^2 \overline{p}^2}-m^2\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}+\frac{2 \;\text{Li}_2\left(\frac{\overline{p}^2 m^2+\overline{p}^2 \sqrt{m^4-4 m^2 \overline{p}^2}}{\overline{p}^2 m^2+\sqrt{\overline{p}^2 \left(\overline{p}^2-4 m^2\right)} \sqrt{m^4-4 m^2 \overline{p}^2}}i \left(\sqrt{m^4-4 m^2 \overline{p}^2}-m^2\right)\epsilon \right)}{\sqrt{m^2 \left(m^2-4 \overline{p}^2\right)}}\right)-\frac{11 m^2-38 \overline{p}^2}{36 \left(m^2-4 \overline{p}^2\right)}+\frac{1}{6} \log (2 \pi )