PaXC0Expand
PaXC0Expand
is an option for PaXEvaluate
.
If set to True
, Package-X function C0Expand
will be applied to the output of Package-X.
See also
Overview, PaXEvaluate.
Examples
PaVe[0, 0, 1, {SP[p, p], SP[p, p], m^2}, {m^2, m^2, m^2}]
PaXEvaluate[%]
C001(p2,p2,m2,m2,m2,m2)
−2(m2−4p2)29m2p4C0(m2,p2,p2,m2,m2,m2)+(m2−4p2)2p6C0(m2,p2,p2,m2,m2,m2)−2(m2−4p2)2m6C0(m2,p2,p2,m2,m2,m2)+(m2−4p2)23m4p2C0(m2,p2,p2,m2,m2,m2)−(m2−4p2)23πm2p2−36(m2−4p2)11m2+3(m2−4p2)2πp4+18(m2−4p2)19p2−3(m2−4p2)27m2p2(p2−4m2)log(2m2p2(p2−4m2)−p2+2m2)−3(m2−4p2)2p2p2(p2−4m2)log(2m2p2(p2−4m2)−p2+2m2)+4(m2−4p2)23πm4+3p2(m2−4p2)22m4p2(p2−4m2)log(2m2p2(p2−4m2)−p2+2m2)−12ε1+121(−log(m2μ2)+γ−log(4π)+2log(2π))
The full result is a ConditionalExpression
PaVe[0, 0, 1, {SP[p, p], SP[p, p], m^2}, {m^2, m^2, m^2}]
res = PaXEvaluate[%, PaXC0Expand -> True];
C001(p2,p2,m2,m2,m2,m2)
121(−log(4π)+γ−ε1)−121log(m2μ2)+⟨⟨6⟩⟩+61log(2π) if m4−⟨⟨1⟩⟩>0
m4−4m2p2>0
Use Normal
to get the actual expression
121(−log(4π)+γ−ε1)−121log(m2μ2)+3(m2−4p2)2p2log(2m22m2−p2+p2(p2−4m2))p2(p2−4m2)(2m4−7p2m2−p4)+43(m2−4p2)2π(3m4−12p2m2+4p4)−2(m2−4p2)21(m6−6p2m4+9p4m2−2p6)−m2(m2−4p2)Li2(−((m2−2p2)m2)−3−m4m4−4m2p2−((m2−2p2)m2)−m4−4m2p2m2i(−m2+2p2+m4−4m2p2)ϵ)+m2(m2−4p2)Li2(−((m2−2p2)m2)−3−m4m4−4m2p2m2m4−4m2p2−m2(m2−2p2)i(−m2+2p2+m4−4m2p2)ϵ)−m2(m2−4p2)Li2(3−m4m4−4m2p2−m2(m2−2p2)−((m2−2p2)m2)−m4−4m2p2m2+i(m2−2p2+m4−4m2p2)ϵ)+m2(m2−4p2)Li2(3−m4m4−4m2p2−m2(m2−2p2)m2m4−4m2p2−m2(m2−2p2)+i(m2−2p2+m4−4m2p2)ϵ)−m2(m2−4p2)2Li2(m2p2−p2(p2−4m2)m4−4m2p2m2p2−p2m4−4m2p2+i(m2+m4−4m2p2)ϵ)+m2(m2−4p2)2Li2(m2p2−p2(p2−4m2)m4−4m2p2p2m2+p2m4−4m2p2+i(m2+m4−4m2p2)ϵ)−m2(m2−4p2)2Li2(p2m2+p2(p2−4m2)m4−4m2p2m2p2−p2m4−4m2p2i(m4−4m2p2−m2)ϵ)+m2(m2−4p2)2Li2(p2m2+p2(p2−4m2)m4−4m2p2p2m2+p2m4−4m2p2i(m4−4m2p2−m2)ϵ)−36(m2−4p2)11m2−38p2+61log(2π)