LToolsSetDebugKey
corresponds to the
SetDebugKey
function in LoopTools.
See ?LoopTools`SetDebugKey
for further information
regarding this LoopTools symbol.
Use LToolsSetDebugKey[-1]
to obtain the most complete
debugging output. This can be useful when investigating issues with the
evaluation of certain kinematic limits in LoopTools.
[] LToolsLoadLibrary
\text{LoopTools library loaded.}
(* ====================================================
FF 2.0, a package to evaluate one-loop integrals
written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam
====================================================
for the algorithms used see preprint NIKHEF-H 89/17,
'New Algorithms for One-loop Integrals', by G.J. van
Oldenborgh and J.A.M. Vermaseren, published in
Zeitschrift fuer Physik C46(1990)425.
====================================================*)
[C0[0, 0, 0, 0, 1, 0], q] LToolsEvaluate
\text{FeynCalc$\grave{ }$LoopTools$\grave{ }$Private$\grave{ }$ltFailed}\left(\text{C}_0(0,0,0,0,0,1)\right)+\frac{1.}{\varepsilon }
[-1] LToolsSetDebugKey
-1
[C0[0, 0, 0, 0, 1, 0], q]
LToolsEvaluate
(* Bcoeff 4
p = 0.0000000000000000
m1 = 0.0000000000000000
m2 = 0.0000000000000000
bb0 = (-1.7219455507509331,0.0000000000000000)
bb1 = (0.86097277537546657,0.0000000000000000)
bb11 = (-0.57398185025031101,0.0000000000000000)
bb111 = (0.43048638768773329,0.0000000000000000)
dbb0 = (9.99999999999999978E+122,9.99999999999999978E+122)
dbb0:1 = (9.99999999999999978E+122,9.99999999999999978E+122)
dbb1 = (9.99999999999999978E+122,9.99999999999999978E+122)
dbb1:1 = (9.99999999999999978E+122,9.99999999999999978E+122)
dbb00 = (0.14349546256257775,0.0000000000000000)
dbb001 = (-7.17477312812888762E-002,0.0000000000000000)
====================================================
Bcoeff 5
p = 0.0000000000000000
m1 = 0.0000000000000000
m2 = 1.0000000000000000
bb0 = (-0.72194555075093314,-0.0000000000000000)
bb0:1 = (1.0000000000000000,0.0000000000000000)
bb1 = (0.61097277537546657,0.0000000000000000)
bb1:1 = (-0.50000000000000000,0.0000000000000000)
bb00 = (-5.54863876877332851E-002,0.0000000000000000)
bb00:1 = (0.25000000000000000,0.0000000000000000)
bb11 = (-0.46287073913919996,-0.0000000000000000)
bb11:1 = (0.33333333333333331,0.0000000000000000)
bb001 = (6.47687029029332950E-002,0.0000000000000000)
bb001:1 = (-0.16666666666666666,0.0000000000000000)
bb111 = (0.36798638768773329,0.0000000000000000)
bb111:1 = (-0.25000000000000000,0.0000000000000000)
dbb0 = (0.50000000000000000,-1.00000000000000001E-050)
dbb1 = (-0.16666666666666669,5.00000000000000004E-051)
dbb00 = (7.40510181181333327E-002,-8.33333333333333290E-052)
dbb00:1 = (-8.33333333333333287E-002,0.0000000000000000)
dbb11 = (8.33333333333333148E-002,-3.33333333333333316E-051)
dbb001 = (-4.74421757257333238E-002,4.16666666666666645E-052)
dbb001:1 = (4.16666666666666644E-002,0.0000000000000000)
====================================================
Ccoeff 6
p1 = 0.0000000000000000
p2 = 0.0000000000000000
p1p2 = 0.0000000000000000
m1 = 0.0000000000000000
m2 = 0.0000000000000000
m3 = 1.0000000000000000
collinear C0, perm = 312
C0collDR, perm = 123
p1 = 0.0000000000000000
p2 = 0.0000000000000000
p3 = 0.0000000000000000
m1 = 0.0000000000000000
m2 = 0.0000000000000000
m3 = 1.0000000000000000
C0collDR: qltri3
C0collDR:0 = (NaN,NaN)
C0collDR:1 = (1.0000000000000000,0.0000000000000000)
C0collDR:2 = (0.0000000000000000,0.0000000000000000)
cc0 = (NaN,NaN)
cc0:1 = (1.0000000000000000,0.0000000000000000)
cc1 = (NaN,NaN)
cc1:1 = (NaN,NaN)
cc1:2 = (NaN,NaN)
cc2 = (NaN,NaN)
cc2:1 = (NaN,NaN)
cc2:2 = (NaN,NaN)
cc00 = (NaN,NaN)
cc00:1 = (NaN,NaN)
cc00:2 = (NaN,NaN)
cc11 = (NaN,NaN)
cc11:1 = (NaN,NaN)
cc11:2 = (NaN,NaN)
cc12 = (NaN,NaN)
cc12:1 = (NaN,NaN)
cc12:2 = (NaN,NaN)
cc22 = (NaN,NaN)
cc22:1 = (NaN,NaN)
cc22:2 = (NaN,NaN)
cc001 = (NaN,NaN)
cc001:1 = (NaN,NaN)
cc001:2 = (NaN,NaN)
cc002 = (NaN,NaN)
cc002:1 = (NaN,NaN)
cc002:2 = (NaN,NaN)
cc111 = (NaN,NaN)
cc111:1 = (NaN,NaN)
cc111:2 = (NaN,NaN)
cc112 = (NaN,NaN)
cc112:1 = (NaN,NaN)
cc112:2 = (NaN,NaN)
cc122 = (NaN,NaN)
cc122:1 = (NaN,NaN)
cc122:2 = (NaN,NaN)
cc222 = (NaN,NaN)
cc222:1 = (NaN,NaN)
cc222:2 = (NaN,NaN)
cc0000 = (NaN,NaN)
cc0000:1 = (NaN,NaN)
cc0000:2 = (NaN,NaN)
cc0011 = (NaN,NaN)
cc0011:1 = (NaN,NaN)
cc0011:2 = (NaN,NaN)
cc0012 = (NaN,NaN)
cc0012:1 = (NaN,NaN)
cc0012:2 = (NaN,NaN)
cc0022 = (NaN,NaN)
cc0022:1 = (NaN,NaN)
cc0022:2 = (NaN,NaN)
cc1111 = (NaN,NaN)
cc1111:1 = (NaN,NaN)
cc1111:2 = (NaN,NaN)
cc1112 = (NaN,NaN)
cc1112:1 = (NaN,NaN)
cc1112:2 = (NaN,NaN)
cc1122 = (NaN,NaN)
cc1122:1 = (NaN,NaN)
cc1122:2 = (NaN,NaN)
cc1222 = (NaN,NaN)
cc1222:1 = (NaN,NaN)
cc1222:2 = (NaN,NaN)
cc2222 = (NaN,NaN)
cc2222:1 = (NaN,NaN)
cc2222:2 = (NaN,NaN)
====================================================*)
\text{FeynCalc$\grave{ }$LoopTools$\grave{ }$Private$\grave{ }$ltFailed}\left(\text{C}_0(0,0,0,0,0,1)\right)+\frac{1.}{\varepsilon }