FIREBurn[expr, {q1, q2, ...}, {p1, p2, ...}]
reduces
loop integrals with loop momenta q1, q2, ...
and external
momenta p1, p2, ...
with integration-by-parts (IBP)
relations.
FIREBurn
expects that the input does not contain any
loop integrals with linearly dependent propagators. Therefore, prior to
starting the reduction, use ApartFF
.
The evaluation is done on a parallel kernel using A.V. Smirnov’s and V.A. Smirnov’s FIRE.
= SFAD[{p, m^2, 2}, {{0, 2 p . k}, m^2, 3}] int
\frac{1}{(p^2-m^2+i \eta )^2.(2 (k\cdot p)-m^2+i \eta )^3}
[int, {p}, {k}, Timing -> False] FIREBurn
-\frac{(D-5) (D-3) k^2 \left(D m^2-4 k^2-6 m^2\right)}{m^4 \left(m^2-4 k^2\right)^3 (2 (k\cdot p)-m^2+i \eta ).(p^2-m^2+i \eta )}-\frac{(D-2) \left(2 D^2 k^2-24 D k^2+66 k^2+m^2\right)}{2 m^4 \left(m^2-4 k^2\right)^3 (p^2-m^2+i \eta )}