Tdec[{{qi, mu}, {qj, nu}, ...}, {p1, p2, ...}]
calculates the tensorial decomposition formulas for Lorentzian
integrals. The more common ones are saved in TIDL
.
The automatic symmetrization of the tensor basis is done using Alexey Pak’s algorithm described in arXiv:1111.0868.
Overview, TID, TIDL, OneLoopSimplify.
Check that \int d^D f(p,q) q^{\mu}= \frac{p^{\mu}}{p^2} \int d^D f(p,q) p \cdot q
[{q, \[Mu]}, {p}]
Tdec
%[[2]] /. %[[1]]
\left\{\left\{\text{X1}\to p\cdot q,\text{X2}\to p^2\right\},\frac{\text{X1} p^{\mu }}{\text{X2}}\right\}
\frac{p^{\mu } (p\cdot q)}{p^2}
This calculates integral transformation for any \int d^D q_1 d^D q_2 d^D q_3 f(p,q_1,q_2,q_3) q_1^{\mu} q_2^{\nu}q_3^{\rho}.
[{{Subscript[q, 1], \[Mu]}, {Subscript[q, 2], \[Nu]}, {Subscript[q, 3], \[Rho]}}, {p}, List -> False]
Tdec
[% FVD[p, \[Mu]] FVD[p, \[Nu]] FVD[p, \[Rho]]] // Factor Contract
\frac{p^{\rho } g^{\mu \nu } \left(p\cdot q_3\right) \left(\left(p\cdot q_1\right) \left(p\cdot q_2\right)-p^2 \left(q_1\cdot q_2\right)\right)}{(1-D) p^4}+\frac{p^{\nu } g^{\mu \rho } \left(p\cdot q_2\right) \left(\left(p\cdot q_1\right) \left(p\cdot q_3\right)-p^2 \left(q_1\cdot q_3\right)\right)}{(1-D) p^4}+\frac{p^{\mu } g^{\nu \rho } \left(p\cdot q_1\right) \left(\left(p\cdot q_2\right) \left(p\cdot q_3\right)-p^2 \left(q_2\cdot q_3\right)\right)}{(1-D) p^4}-\frac{p^{\mu } p^{\nu } p^{\rho } \left(D \left(p\cdot q_1\right) \left(p\cdot q_2\right) \left(p\cdot q_3\right)+2 \left(p\cdot q_1\right) \left(p\cdot q_2\right) \left(p\cdot q_3\right)-p^2 \left(q_1\cdot q_2\right) \left(p\cdot q_3\right)-p^2 \left(q_1\cdot q_3\right) \left(p\cdot q_2\right)-p^2 \left(q_2\cdot q_3\right) \left(p\cdot q_1\right)\right)}{(1-D) p^6}
\left(p\cdot q_1\right) \left(p\cdot q_2\right) \left(p\cdot q_3\right)
To calculate a tensor decomposition with specific kinematic
constraints, use the option FinalSubstitutions
. Notice that
kinematic configurations involving zero Gram determinants are not
supported.
[{{l, \[Mu]}, {l, \[Nu]}}, {p1, p2},
Tdec-> {SPD[p1] -> 0, SPD[p2] -> 0}, FCE -> True, List -> False] FinalSubstitutions
-\frac{g^{\mu \nu } \left(l^2 (\text{p1}\cdot \;\text{p2})^2-2 (l\cdot \;\text{p1}) (l\cdot \;\text{p2}) (\text{p1}\cdot \;\text{p2})\right)}{(2-D) (\text{p1}\cdot \;\text{p2})^2}+\frac{\text{p2}^{\mu } \;\text{p2}^{\nu } \left(2 (l\cdot \;\text{p1})^2 (\text{p1}\cdot \;\text{p2})^2-D (l\cdot \;\text{p1})^2 (\text{p1}\cdot \;\text{p2})^2\right)}{(2-D) (\text{p1}\cdot \;\text{p2})^4}+\frac{\text{p1}^{\mu } \;\text{p1}^{\nu } \left(2 (l\cdot \;\text{p2})^2 (\text{p1}\cdot \;\text{p2})^2-D (l\cdot \;\text{p2})^2 (\text{p1}\cdot \;\text{p2})^2\right)}{(2-D) (\text{p1}\cdot \;\text{p2})^4}-\frac{\text{p1}^{\nu } \;\text{p2}^{\mu } \left(D (l\cdot \;\text{p1}) (l\cdot \;\text{p2}) (\text{p1}\cdot \;\text{p2})^2-l^2 (\text{p1}\cdot \;\text{p2})^3\right)}{(2-D) (\text{p1}\cdot \;\text{p2})^4}-\frac{\text{p1}^{\mu } \;\text{p2}^{\nu } \left(D (l\cdot \;\text{p1}) (l\cdot \;\text{p2}) (\text{p1}\cdot \;\text{p2})^2-l^2 (\text{p1}\cdot \;\text{p2})^3\right)}{(2-D) (\text{p1}\cdot \;\text{p2})^4}