FeynCalc manual (development version)

TID

TID[amp, q] performs tensor decomposition of 1-loop integrals with loop momentum q.

See also

Overview, OneLoopSimplify, TIDL, PaVeLimitTo4.

Examples

FCClearScalarProducts[];
int = FAD[{k, m}, k - Subscript[p, 1], k - Subscript[p, 2]] FVD[k, \[Mu]] // FCI

kμ(k2m2).(kp1)2.(kp2)2\frac{k^{\mu }}{\left(k^2-m^2\right).(k-p_1){}^2.(k-p_2){}^2}

By default, all tensor integrals are reduced to the Passarino-Veltman scalar integrals A0A_0, B0B_0, C0C_0, D0D_0 etc.

TID[int, k]

p12p2μp1μ(p1p2)2((p1p2)2p12p22)k2.((k+p1)2m2)p22(m2+p12)p1μ+p12(m2+p22)p2μ+(m2+p12)(p2μ)(p1p2)(m2+p22)p1μ(p1p2)2((p1p2)2p12p22)(k2m2).(kp1)2.(kp2)2p2μ(p1p2)p22p1μ2((p1p2)2p12p22)k2.((k+p2)2m2)p12p2μ+p22p1μp1μ(p1p2)p2μ(p1p2)2k2.(kp1+p2)2((p1p2)2p12p22)\frac{p_1{}^2 p_2{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right) k^2.\left((k+p_1){}^2-m^2\right)}-\frac{p_2{}^2 \left(m^2+p_1{}^2\right) p_1{}^{\mu }+p_1{}^2 \left(m^2+p_2{}^2\right) p_2{}^{\mu }+\left(m^2+p_1{}^2\right) \left(-p_2{}^{\mu }\right) \left(p_1\cdot p_2\right)-\left(m^2+p_2{}^2\right) p_1{}^{\mu } \left(p_1\cdot p_2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right) \left(k^2-m^2\right).(k-p_1){}^2.(k-p_2){}^2}-\frac{p_2{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^2 p_1{}^{\mu }}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right) k^2.\left((k+p_2){}^2-m^2\right)}-\frac{p_1{}^2 p_2{}^{\mu }+p_2{}^2 p_1{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^{\mu } \left(p_1\cdot p_2\right)}{2 k^2.(k-p_1+p_2){}^2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right)}

Scalar integrals can be converted to the Passarino-Veltman notation via the option ToPaVe

TID[int, k, ToPaVe -> True]

iπ2(p12p2μp1μ(p1p2))  B0(p12,0,m2)2((p1p2)2p12p22)iπ2(p2μ(p1p2)p22p1μ)  B0(p22,0,m2)2((p1p2)2p12p22)iπ2(p12p2μ+p22p1μp1μ(p1p2)p2μ(p1p2))  B0(p122(p1p2)+p22,0,0)2((p1p2)2p12p22)iπ2(p22(m2+p12)p1μ+p12(m2+p22)p2μ+(m2+p12)(p2μ)(p1p2)(m2+p22)p1μ(p1p2))  C0(p12,p22,p122(p1p2)+p22,0,m2,0)2((p1p2)2p12p22)\frac{i \pi ^2 \left(p_1{}^2 p_2{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)\right) \;\text{B}_0\left(p_1{}^2,0,m^2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_2{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^2 p_1{}^{\mu }\right) \;\text{B}_0\left(p_2{}^2,0,m^2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_1{}^2 p_2{}^{\mu }+p_2{}^2 p_1{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^{\mu } \left(p_1\cdot p_2\right)\right) \;\text{B}_0\left(p_1{}^2-2 \left(p_1\cdot p_2\right)+p_2{}^2,0,0\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_2{}^2 \left(m^2+p_1{}^2\right) p_1{}^{\mu }+p_1{}^2 \left(m^2+p_2{}^2\right) p_2{}^{\mu }+\left(m^2+p_1{}^2\right) \left(-p_2{}^{\mu }\right) \left(p_1\cdot p_2\right)-\left(m^2+p_2{}^2\right) p_1{}^{\mu } \left(p_1\cdot p_2\right)\right) \;\text{C}_0\left(p_1{}^2,p_2{}^2,p_1{}^2-2 \left(p_1\cdot p_2\right)+p_2{}^2,0,m^2,0\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2 p_2{}^2\right)}

We can force the reduction algorithm to use Passarino-Veltman coefficient functions via the option UsePaVeBasis

TID[int, k, UsePaVeBasis -> True]

iπ2p1μ  C1(p12,p12+p222(p1p2),p22,m2,0,0)iπ2p2μ  C1(p22,p12+p222(p1p2),p12,m2,0,0)-i \pi ^2 p_1{}^{\mu } \;\text{C}_1\left(p_1{}^2,p_1{}^2+p_2{}^2-2 \left(p_1\cdot p_2\right),p_2{}^2,m^2,0,0\right)-i \pi ^2 p_2{}^{\mu } \;\text{C}_1\left(p_2{}^2,p_1{}^2+p_2{}^2-2 \left(p_1\cdot p_2\right),p_1{}^2,m^2,0,0\right)

Very often the integral can be simplified via partial fractioning even before performing the loop reduction. In this case the output will contain a mixture of FAD symbols and Passarino-Veltman functions

TID[SPD[p, q] FAD[q, {q - p, m}] FVD[q, mu], q, UsePaVeBasis -> True]

pmu2(q2m2)+12iπ2(m2p2)pmu((m2p2)  B0(p2,0,m2)2p2A0(m2)2p2)\frac{p^{\text{mu}}}{2 \left(q^2-m^2\right)}+\frac{1}{2} i \pi ^2 \left(m^2-p^2\right) p^{\text{mu}} \left(\frac{\left(m^2-p^2\right) \;\text{B}_0\left(p^2,0,m^2\right)}{2 p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right)

This can be avoided by setting both UsePaVeBasis and ToPaVe to True

TID[SPD[p, q] FAD[q, {q - p, m}] FVD[q, mu], q, UsePaVeBasis -> True, ToPaVe -> True]

12iπ2(m2p2)pmu((m2p2)  B0(p2,0,m2)2p2A0(m2)2p2)+12iπ2pmu  A0(m2)\frac{1}{2} i \pi ^2 \left(m^2-p^2\right) p^{\text{mu}} \left(\frac{\left(m^2-p^2\right) \;\text{B}_0\left(p^2,0,m^2\right)}{2 p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right)+\frac{1}{2} i \pi ^2 p^{\text{mu}} \;\text{A}_0\left(m^2\right)

Alternatively, we may set ToPaVe to Automatic which will automatically invoke the ToPaVe function if the final result contains even a single Passarino-Veltman function

TID[SPD[p, q] FAD[q, {q - p, m}] FVD[q, mu], q, ToPaVe -> Automatic]

(m2p2)2pmu4p2q2.((qp)2m2)(m23p2)pmu4p2(q2m2)\frac{\left(m^2-p^2\right)^2 p^{\text{mu}}}{4 p^2 q^2.\left((q-p)^2-m^2\right)}-\frac{\left(m^2-3 p^2\right) p^{\text{mu}}}{4 p^2 \left(q^2-m^2\right)}

TID[SPD[p, q] FAD[q, {q - p, m}] FVD[q, mu], q, UsePaVeBasis -> True, ToPaVe -> Automatic]

12iπ2(m2p2)pmu((m2p2)  B0(p2,0,m2)2p2A0(m2)2p2)+12iπ2pmu  A0(m2)\frac{1}{2} i \pi ^2 \left(m^2-p^2\right) p^{\text{mu}} \left(\frac{\left(m^2-p^2\right) \;\text{B}_0\left(p^2,0,m^2\right)}{2 p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right)+\frac{1}{2} i \pi ^2 p^{\text{mu}} \;\text{A}_0\left(m^2\right)

The basis of Passarino-Veltman coefficient functions is used automatically if there are zero Gram determinants

FCClearScalarProducts[]; 
 
SPD[Subscript[p, 1], Subscript[p, 1]] = M^2; 
 
SPD[Subscript[p, 2], Subscript[p, 2]] = M^2; 
 
SPD[Subscript[p, 1], Subscript[p, 2]] = M^2; 
 
TID[FAD[{k, m}, k - Subscript[p, 1], k - Subscript[p, 2]] FVD[k, \[Mu]], k]

1d92pz2yqj2pc

iπ2(p1μ+p2μ)  C1(0,M2,M2,0,0,m2)-i \pi ^2 \left(p_1{}^{\mu }+p_2{}^{\mu }\right) \;\text{C}_1\left(0,M^2,M^2,0,0,m^2\right)

A vanishing Gram determinant signals that the external momenta are linearly dependent on each other. This redundancy can be resolved by switching to a different basis. To that aim we need to run FCLoopFindTensorBasis to analyze the set of external momenta causing troubles

FCLoopFindTensorBasis[{-Subscript[p, 1], -Subscript[p, 2]}, {}, n]

(p1p2p2p1  FCGV(Prefactor)(1))\left( \begin{array}{c} -p_1 \\ -p_2 \\ -p_2\to -p_1 \;\text{FCGV}(\text{Prefactor})(1) \\ \end{array} \right)

We see that p1p_1 and p2p_2 are proportional to each other, so that only one of these vectors is linearly independent. This also means that the scalar products involving loop momentum p1kp_1 \cdot k and p2kp_2 \cdot k are identical. Supplying this information to TID we can now achieve the desired reduction to scalars.

TID[FAD[{k, m}, k - Subscript[p, 1], k - Subscript[p, 2]] FVD[k, \[Mu]], k, 
  TensorReductionBasisChange -> {{-Subscript[p, 1], -Subscript[p, 2]} -> {-Subscript[p, 1]}}, 
  FinalSubstitutions -> {SPD[k, Subscript[p, 2]] -> SPD[k, Subscript[p, 1]]}]

((mM)(m+M)+2M2)p1μ2M2(k2)2.((k+p1)2m2)p1μ2M2k2.((k+p1)2m2)\frac{\left((m-M) (m+M)+2 M^2\right) p_1{}^{\mu }}{2 M^2 \left(k^2\right)^2.\left((k+p_1){}^2-m^2\right)}-\frac{p_1{}^{\mu }}{2 M^2 k^2.\left((k+p_1){}^2-m^2\right)}

Notice that the result contains a propagator squared. This can be reduced further using IBPs (e.g. by employing FIRE or KIRA via the FeynHelpers interface).

For cases involving light-like external momenta we often need to introduce an auxiliary vector, since the available vector are not sufficient to form a basis

FCClearScalarProducts[]; 
 
SPD[p] = 0; 
 
TID[FAD[{k, m}, k - p] FVD[k, \[Mu]], k]

0kz04gd9tjslc

pμk2.((kp)2m2)+iπ2pμ  B1(0,0,m2)\frac{p^{\mu }}{k^2.\left((k-p)^2-m^2\right)}+i \pi ^2 p^{\mu } \;\text{B}_1\left(0,0,m^2\right)

Running FCLoopFindTensorBasis we get a suggestion to introduce an auxiliary vector nn to the basis. The scalar products of this vector with other external momenta must be nonvanishing, but we are free to make the vector itself light-like (for simplicity)

FCLoopFindTensorBasis[{-p}, {}, n]

{{p,n},{},{}}\{\{-p,n\},\{\},\{\}\}

SPD[n] = 0; 
 
TID[FAD[{k, m}, k - p] FVD[k, \[Mu]], k, TensorReductionBasisChange -> {{-p} -> {-p, n}}, AuxiliaryMomenta -> {n}]

2pμ(kn)+m2nμ+2pμ(np)2(np)k2.((kp)2m2)nμ2(np)(k2m2)\frac{-2 p^{\mu } (k\cdot n)+m^2 n^{\mu }+2 p^{\mu } (n\cdot p)}{2 (n\cdot p) k^2.\left((k-p)^2-m^2\right)}-\frac{n^{\mu }}{2 (n\cdot p) \left(k^2-m^2\right)}

Unfortunately, in this case TID alone cannot eliminate the scalar products of nn with the loop momentum in the numerator. For that we need to use IBPs. Still, it manages to reduce the tensor integral to scalars, even though at this stage not all of them can be mapped to scalar PaVe functions.

The dependence on the auxiliary vector nn must cancel in the final result for this integral, as the auxiliary vector is unphysical and the original integral does not depend on it. To arrive at these cancellations for more complicated tensor integral it might be necessary to exploit the relations between the physical vectors as given by FCLoopFindTensorBasis and contract those with nn.

In FeynCalc, Passarino-Veltman coefficient functions are defined in the same way as in LoopTools. If one wants to use a different definition, it is useful to activate the option GenPaVe

FCClearScalarProducts[]; 
 
SPD[Subscript[p, 1], Subscript[p, 1]] = 0; 
 
SPD[Subscript[p, 2], Subscript[p, 2]] = 0; 
 
SPD[Subscript[p, 1], Subscript[p, 2]] = 0; 
 
TID[FAD[{k, m}, k - Subscript[p, 1], k - Subscript[p, 2]] FVD[k, \[Mu]] // FCI, k, GenPaVe -> True] 
 
FCClearScalarProducts[];

1mx6pq1c6qsv5

iπ2p1μ  GenPaVe({1},(0mp10p20))iπ2p2μ  GenPaVe({2},(0mp10p20))-i \pi ^2 p_1{}^{\mu } \;\text{GenPaVe}\left(\{1\},\left( \begin{array}{cc} 0 & m \\ p_1 & 0 \\ p_2 & 0 \\ \end{array} \right)\right)-i \pi ^2 p_2{}^{\mu } \;\text{GenPaVe}\left(\{2\},\left( \begin{array}{cc} 0 & m \\ p_1 & 0 \\ p_2 & 0 \\ \end{array} \right)\right)

To simplify manifestly IR-finite 1-loop results written in terms of Passarino-Veltman functions, we may employ the option PaVeLimitTo4 (must be used together with ToPaVe). The result is valid up to 0th order in Epsilon, i.e. sufficient for 1-loop calculations.

FCClearScalarProducts[]; 
 
int = (D - 1) (D - 2)/(D - 3) FVD[p, mu] FVD[p, nu] FAD[p, p - q]

(D2)(D1)pmupnu(D3)p2.(pq)2\frac{(D-2) (D-1) p^{\text{mu}} p^{\text{nu}}}{(D-3) p^2.(p-q)^2}

TID[int, p, ToPaVe -> True]

iπ2(2D)  B0(q2,0,0)(Dqmuqnuq2gmu  nu)4(3D)\frac{i \pi ^2 (2-D) \;\text{B}_0\left(q^2,0,0\right) \left(D q^{\text{mu}} q^{\text{nu}}-q^2 g^{\text{mu}\;\text{nu}}\right)}{4 (3-D)}

TID[int, p, ToPaVe -> True, PaVeLimitTo4 -> True]

12iπ2  B0(q2,0,0)(4qmuqnuq2gˉmu  nu)+12iπ2(2qmuqnuq2gˉmu  nu)\frac{1}{2} i \pi ^2 \;\text{B}_0\left(\overline{q}^2,0,0\right) \left(4 \overline{q}^{\text{mu}} \overline{q}^{\text{nu}}-\overline{q}^2 \bar{g}^{\text{mu}\;\text{nu}}\right)+\frac{1}{2} i \pi ^2 \left(2 \overline{q}^{\text{mu}} \overline{q}^{\text{nu}}-\overline{q}^2 \bar{g}^{\text{mu}\;\text{nu}}\right)

Sometimes one would like to have external momenta multiplied by symbolic parameters in the propagators. In this case one should first declare the corresponding variables to be of FCVariable type

DataType[a, FCVariable] = True;
DataType[b, FCVariable] = True;
ExpandScalarProduct[SP[P, Q] /. P -> a P1 + b P2] 
 
StandardForm[%]

```mathematica

$$a \left(\overline{\text{P1}}\cdot \overline{Q}\right)+b \left(\overline{\text{P2}}\cdot \overline{Q}\right)$$

```mathematica
(*a Pair[Momentum[P1], Momentum[Q]] + b Pair[Momentum[P2], Momentum[Q]]*)