PaVeLimitTo4[expr]
simplifies products of
Passarino-Veltman functions and D-dependent prefactors by evaluating the
prefactors at D=4 and adding an extra
term from the product of (D-4) and the
UV pole of the Passarino-Veltman function.
This is possible because the UV poles of arbitrary Passarino-Veltman
functions can be determined via PaVeUVPart
. The result is
valid up to 0th order in Epsilon, i.e. it is sufficient for 1-loop
calculations.
Warning! This simplification always ignores possible IR poles of Passarino-Veltman functions. Therefore, it can be used only if all IR poles are regulated without using dimensional regularization (e.g. by assigning gluons or photons a fake mass) or if it is known in advance that the given expression is free of IR singularities.
The application of PaVeLimitTo4
is equivalent to using
the old OneLoop
routine with the flags
$LimitTo4
and $LimitTo4IRUnsafe
set to
True
.
= (D - 2)/(D - 3) A0[m^2]
ex
[ex] PaVeLimitTo4
\frac{(D-2) \;\text{A}_0\left(m^2\right)}{D-3}
2 \;\text{A}_0\left(m^2\right)+2 m^2
Simplify the 1-loop amplitude for H \to g g
= (-(1/((-2 + D) mH^2 mW sinW)) 2 I (-4 + D) e gs^2 mt^2 \[Pi]^2 B0[mH^2, mt^2, mt^2]
ex [Glu2, Glu3] (-2 SPD[k1, Polarization[k2, -I, Transversality -> True]]
SD[k2, Polarization[k1, -I, Transversality -> True]] +
SPD^2 SPD[Polarization[k1, -I, Transversality -> True],
mH[k2, -I, Transversality -> True]]) - 1/((-2 +
PolarizationD) mH^2 mW sinW) I e gs^2 mt^2 (-2 mH^2 + D mH^2 -
8 mt^2) \[Pi]^2 C0[0, 0, mH^2, mt^2, mt^2, mt^2] SD[Glu2, Glu3] (-2 SPD[k1,
[k2, -I, Transversality -> True]] SPD[k2, Polarization[k1,
Polarization-I, Transversality -> True]] + mH^2 SPD[Polarization[k1, -I,
-> True], Polarization[k2, -I, Transversality -> True]])) Transversality
-\frac{2 i \pi ^2 (D-4) e \;\text{gs}^2 \;\text{mt}^2 \delta ^{\text{Glu2}\;\text{Glu3}} \;\text{B}_0\left(\text{mH}^2,\text{mt}^2,\text{mt}^2\right) \left(\text{mH}^2 \left(\varepsilon ^*(\text{k1})\cdot \varepsilon ^*(\text{k2})\right)-2 \left(\text{k1}\cdot \varepsilon ^*(\text{k2})\right) \left(\text{k2}\cdot \varepsilon ^*(\text{k1})\right)\right)}{(D-2) \;\text{mH}^2 \;\text{mW} \;\text{sinW}}-\frac{i \pi ^2 e \;\text{gs}^2 \;\text{mt}^2 \left(D \;\text{mH}^2-2 \;\text{mH}^2-8 \;\text{mt}^2\right) \delta ^{\text{Glu2}\;\text{Glu3}} \;\text{C}_0\left(0,0,\text{mH}^2,\text{mt}^2,\text{mt}^2,\text{mt}^2\right) \left(\text{mH}^2 \left(\varepsilon ^*(\text{k1})\cdot \varepsilon ^*(\text{k2})\right)-2 \left(\text{k1}\cdot \varepsilon ^*(\text{k2})\right) \left(\text{k2}\cdot \varepsilon ^*(\text{k1})\right)\right)}{(D-2) \;\text{mH}^2 \;\text{mW} \;\text{sinW}}
[ex] PaVeLimitTo4
\frac{i \pi ^2 e \;\text{gs}^2 \;\text{mt}^2 \left(\text{mH}^2-4 \;\text{mt}^2\right) \delta ^{\text{Glu2}\;\text{Glu3}} \;\text{C}_0\left(0,0,\text{mH}^2,\text{mt}^2,\text{mt}^2,\text{mt}^2\right) \left(2 \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{k2})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{k1})\right)-\text{mH}^2 \left(\bar{\varepsilon }^*(\text{k1})\cdot \bar{\varepsilon }^*(\text{k2})\right)\right)}{\text{mH}^2 \;\text{mW} \;\text{sinW}}-\frac{2 i \pi ^2 e \;\text{gs}^2 \;\text{mt}^2 \delta ^{\text{Glu2}\;\text{Glu3}} \left(2 \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{k2})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{k1})\right)-\text{mH}^2 \left(\bar{\varepsilon }^*(\text{k1})\cdot \bar{\varepsilon }^*(\text{k2})\right)\right)}{\text{mH}^2 \;\text{mW} \;\text{sinW}}