StandardPropagatorDenominator[propSq + ..., propEik +..., m^2, {n, s}]
encodes a generic Lorentzian propagator denominator \frac{1}{[(q_1+ \ldots)^2 + q_1 \cdot p_1 + \ldots +
m^2 + s i \eta]^n}.
propSq
should be of the form
Momentum[q1, D]
, while propEik
should look
like Pair[Momentum[q1, D], Momentum[p1, D]
.
This allows to accommodate for standard propagators of the type 1/(p^2-m^2) but also for propagators encountered in manifestly Lorentz covariant effective field theories such as HQET or SCET.
StandardPropagatorDenominator
is an internal object. To
enter such propagators in FeynCalc you should use SFAD
.
Overview, PropagatorDenominator, CartesianPropagatorDenominator, GenericPropagatorDenominator, FeynAmpDenominator.
[StandardPropagatorDenominator[Momentum[p, D], 0, -m^2, {1, 1}]] FeynAmpDenominator
\frac{1}{(p^2-m^2+i \eta )}
[StandardPropagatorDenominator[0, Pair[Momentum[p, D], Momentum[q, D]], -m^2, {1, 1}]] FeynAmpDenominator
\frac{1}{(p\cdot q-m^2+i \eta )}