CartesianPropagatorDenominator[propSq + ..., propEik + ..., m^2, {n, s}]
encodes a generic Cartesian propagator denominator of the form \frac{1}{[(q1+...)^2 + q1.p1 + ... + m^2 + s*I
\eta]^n}
propSq
should be of the form
CartesianMomentum[q1, D - 1]
, while propEik
should look like
CartesianPair[CartesianMomentum[q1, D - 1], CartesianMomentum[p1, D - 1]
.
CartesianPropagatorDenominator
is an internal object. To
enter such propagators in FeynCalc you should use CFAD
.
Overview, CFAD, FeynAmpDenominator.
Standard 3-dimensional Cartesian propagator
[CartesianPropagatorDenominator[CartesianMomentum[p, D - 1], 0, m^2, {1, -1}]] FeynAmpDenominator
\frac{1}{(p^2+m^2-i \eta )}
Here we switch the sign of the mass term
[CartesianPropagatorDenominator[CartesianMomentum[p, D - 1], 0, -m^2, {1, -1}]] FeynAmpDenominator
\frac{1}{(p^2-m^2-i \eta )}
And here also the sign of i \eta
[CartesianPropagatorDenominator[CartesianMomentum[p, D - 1], 0, -m^2, {1, +1}]] FeynAmpDenominator
\frac{1}{(p^2-m^2+i \eta )}
Eikonal Cartesian propagator with a residual mass term
[CartesianPropagatorDenominator[0,
FeynAmpDenominator[CartesianMomentum[p, D - 1], CartesianMomentum[q, D - 1]], m^2, {1, -1}]] CartesianPair
\frac{1}{(p\cdot q+m^2-i \eta )}