QuarkGluonVertex[mu, a]
gives the Feynman rule for the
quark-gluon vertex.
QGV
can be used as an abbreviation of
QuarkGluonVertex
.
The dimension and the name of the coupling constant are determined by
the options Dimension
and
CouplingConstant
.
[\[Mu], a, Explicit -> True] QuarkGluonVertex
i g_s T^a.\gamma ^{\mu }
[\[Mu], a] QGV
Q_a^{\mu }
[%] Explicit
i g_s T^a.\gamma ^{\mu }
[\[Mu], a, CounterTerm -> 1, Explicit -> True] QuarkGluonVertex
\frac{2 i g_s^3 S_n \left(C_F-\frac{C_A}{2}\right) T^a.\gamma ^{\mu }}{\varepsilon }
[\[Mu], a, CounterTerm -> 2, Explicit -> True] QuarkGluonVertex
\frac{3 i C_A g_s^3 S_n T^a.\gamma ^{\mu }}{\varepsilon }
[\[Mu], a, CounterTerm -> 3, Explicit -> True] QuarkGluonVertex
\frac{2 i g_s^3 S_n \left(C_A+C_F\right) T^a.\gamma ^{\mu }}{\varepsilon }
[{p, \[Mu], a}, {q}, {k}, OPE -> True, Explicit -> True] QuarkGluonVertex
\Omega \Delta ^{\mu } g_s (\gamma \cdot \Delta ).T^a \left(\sum _{i=0}^{-2+m} (-1)^i (k\cdot \Delta )^i (\Delta \cdot q)^{-2-i+m}\right)+i g_s T^a.\gamma ^{\mu }
[{p, \[Mu], a}, {q}, {k}, OPE -> False, Explicit -> True] QuarkGluonVertex
i g_s T^a.\gamma ^{\mu }