GluonVertex[{p, mu, a}, {q, nu, b}, {k, la, c}]
or
GluonVertex[p, mu, a, q, nu, b, k, la, c]
yields the
3-gluon vertex.
GluonVertex[{p, mu}, {q, nu}, {k, la}]
yields the
3-gluon vertex without color structure and the coupling constant.
GluonVertex[{p, mu, a}, {q, nu, b}, {k, la, c}, {s, si, d}]
or GluonVertex[{mu, a}, {nu, b}, {la, c}, {si, d}]
or
GluonVertex[p, mu, a, q, nu, b, k, la, c , s, si, d]
or
GluonVertex[mu, a, nu, b, la, c, si, d]
yields the 4-gluon
vertex.
GV
can be used as an abbreviation of
GluonVertex
.
The dimension and the name of the coupling constant are determined by
the options Dimension
and CouplingConstant
.
All momenta are flowing into the vertex.
Overview, GluonPropagator, GluonGhostVertex.
[{p, \[Mu], a}, {q, \[Nu], b}, {r, \[Rho], c}]
GluonVertex
[%] Explicit
f^{abc} V^{\mu \nu \rho }(p\text{, }q\text{, }r)
g_s f^{abc} \left(g^{\mu \nu } \left(p^{\rho }-q^{\rho }\right)+g^{\mu \rho } \left(r^{\nu }-p^{\nu }\right)+g^{\nu \rho } \left(q^{\mu }-r^{\mu }\right)\right)
[{p, \[Mu]}, {q, \[Nu]}, {r, \[Rho]}]
GV
[%] Explicit
V^{\mu \nu \rho }(p\text{, }q\text{, }r)
g_s \left(g^{\mu \nu } \left(p^{\rho }-q^{\rho }\right)+g^{\mu \rho } \left(r^{\nu }-p^{\nu }\right)+g^{\nu \rho } \left(q^{\mu }-r^{\mu }\right)\right)
[{p, \[Mu], a}, {q, \[Nu], b}, {r, \[Rho], c}, {s, \[Sigma], d}]
GluonVertex
[%] Explicit
V_{abcd}^{\mu \nu \rho \sigma }(p\text{, }q\text{, }r\text{, }s)
-i g_s^2 \left(f^{ad\text{FCGV}(\text{u19})} f^{bc\text{FCGV}(\text{u19})} \left(g^{\mu \nu } g^{\rho \sigma }-g^{\mu \rho } g^{\nu \sigma }\right)+f^{ac\text{FCGV}(\text{u19})} f^{bd\text{FCGV}(\text{u19})} \left(g^{\mu \nu } g^{\rho \sigma }-g^{\mu \sigma } g^{\nu \rho }\right)+f^{ab\text{FCGV}(\text{u19})} f^{cd\text{FCGV}(\text{u19})} \left(g^{\mu \rho } g^{\nu \sigma }-g^{\mu \sigma } g^{\nu \rho }\right)\right)
[{\[Mu], a}, {\[Nu], b}, {\[Rho], c}, {\[Sigma], d}]
GV
[%] Explicit
V^{abcd}
-i g_s^2 \left(f^{ad\text{FCGV}(\text{u20})} f^{bc\text{FCGV}(\text{u20})} \left(g^{\mu \nu } g^{\rho \sigma }-g^{\mu \rho } g^{\nu \sigma }\right)+f^{ac\text{FCGV}(\text{u20})} f^{bd\text{FCGV}(\text{u20})} \left(g^{\mu \nu } g^{\rho \sigma }-g^{\mu \sigma } g^{\nu \rho }\right)+f^{ab\text{FCGV}(\text{u20})} f^{cd\text{FCGV}(\text{u20})} \left(g^{\mu \rho } g^{\nu \sigma }-g^{\mu \sigma } g^{\nu \rho }\right)\right)