FeynCalc manual (development version)

PauliSimplify

PauliSimplify[exp] simplifies products of Pauli matrices and expands non-commutative products. Double indices and vectors are contracted. The order of the Pauli matrices is not changed.

See also

Overview, PauliSigma, PauliTrick.

Examples

CSIS[p1] . CSI[i] . CSIS[p2] 
 
PauliSimplify[%]

\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)

\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)

CSIS[p] . CSI[i, j, k] . CSIS[p] 
 
PauliSimplify[%]

\left(\overline{\sigma }\cdot \overline{p}\right).\overline{\sigma }^i.\overline{\sigma }^j.\overline{\sigma }^k.\left(\overline{\sigma }\cdot \overline{p}\right)

-\overline{p}^2 \overline{\sigma }^i.\overline{\sigma }^j.\overline{\sigma }^k+2 \overline{p}^k \overline{\sigma }^i.\overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{p}\right)-2 \overline{p}^j \overline{\sigma }^i.\overline{\sigma }^k.\left(\overline{\sigma }\cdot \overline{p}\right)+2 \overline{p}^i \overline{\sigma }^j.\overline{\sigma }^k.\left(\overline{\sigma }\cdot \overline{p}\right)

PauliSimplify[CSIS[p] . CSI[i, j, k] . CSIS[p], PauliReduce -> False]

-\overline{p}^2 \overline{\sigma }^i.\overline{\sigma }^j.\overline{\sigma }^k+2 \overline{p}^k \overline{\sigma }^i.\overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{p}\right)-2 \overline{p}^j \overline{\sigma }^i.\overline{\sigma }^k.\left(\overline{\sigma }\cdot \overline{p}\right)+2 \overline{p}^i \overline{\sigma }^j.\overline{\sigma }^k.\left(\overline{\sigma }\cdot \overline{p}\right)

CSID[i, j, i] 
 
PauliSimplify[%]

\sigma ^i.\sigma ^j.\sigma ^i

3 \sigma ^j-D \sigma ^j

CSID[i, j, k, l, m, i] 
 
PauliSimplify[%]

\sigma ^i.\sigma ^j.\sigma ^k.\sigma ^l.\sigma ^m.\sigma ^i

D \sigma ^j.\sigma ^k.\sigma ^l.\sigma ^m-3 \sigma ^j.\sigma ^k.\sigma ^l.\sigma ^m+2 \sigma ^j.\sigma ^k.\sigma ^m.\sigma ^l-2 \sigma ^j.\sigma ^l.\sigma ^m.\sigma ^k+2 \sigma ^k.\sigma ^l.\sigma ^m.\sigma ^j