PauliSigma[x, dim]
is the internal representation of a
Pauli matrix with a Lorentz or Cartesian index or a contraction of a
Pauli matrix and a Lorentz or Cartesian vector.
PauliSigma[x,3]
simplifies to
PauliSigma[x]
.
[LorentzIndex[\[Alpha]]] PauliSigma
\bar{\sigma }^{\alpha }
[CartesianIndex[i]] PauliSigma
\overline{\sigma }^i
A Pauli matrix contracted with a Lorentz or Cartesian vector is displayed as \sigma \cdot p
[Momentum[p]] PauliSigma
\bar{\sigma }\cdot \overline{p}
[CartesianMomentum[p]] PauliSigma
\overline{\sigma }\cdot \overline{p}
[Momentum[q]] . PauliSigma[Momentum[p - q]]
PauliSigma
% // PauliSigmaExpand
\left(\bar{\sigma }\cdot \overline{q}\right).\left(\bar{\sigma }\cdot \left(\overline{p}-\overline{q}\right)\right)
\left(\bar{\sigma }\cdot \overline{q}\right).\left(\bar{\sigma }\cdot \overline{p}-\bar{\sigma }\cdot \overline{q}\right)
[CartesianMomentum[q]] . PauliSigma[CartesianMomentum[p - q]]
PauliSigma
% // PauliSigmaExpand
\left(\overline{\sigma }\cdot \overline{q}\right).\left(\overline{\sigma }\cdot \left(\overline{p}-\overline{q}\right)\right)
\left(\overline{\sigma }\cdot \overline{q}\right).\left(\overline{\sigma }\cdot \overline{p}-\overline{\sigma }\cdot \overline{q}\right)