MTLND[mu,nu,n,nb]
denotes the positive component in the
lightcone decomposition of the metric tensor g^{\mu \nu} along the vectors n
and nb
in D dimensions. It
corresponds to \frac{1}{2} n^{\mu}
\bar{n}^\nu.
If one omits n
and nb
, the program will use
default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, Pair, FVLPD, FVLND, FVLRD, SPLPD, SPLND, SPLRD, MTLPD, MTLRD.
[\[Mu], \[Nu], n, nb] MTLND
\frac{n^{\mu } \;\text{nb}^{\nu }}{2}
StandardForm[MTLND[\[Mu], \[Nu], n, nb] // FCI]
\frac{1}{2} \;\text{Pair}[\text{LorentzIndex}[\mu ,D],\text{Momentum}[n,D]] \;\text{Pair}[\text{LorentzIndex}[\nu ,D],\text{Momentum}[\text{nb},D]]
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[\[Mu], \[Nu], n, nb] FVD[p, \[Mu]] // Contract MTLND
\frac{1}{2} \;\text{nb}^{\nu } (n\cdot p)
[\[Mu], \[Nu], n, nb] FVD[p, \[Nu]] // Contract MTLND
\frac{1}{2} n^{\mu } (\text{nb}\cdot p)
[\[Mu], \[Nu], n, nb] FVD[n, \[Nu]] // Contract MTLND
\frac{1}{2} n^{\mu } (n\cdot \;\text{nb})
[]
FCClearScalarProducts[n] = 0;
SPD[nb] = 0;
SPD[n, nb] = 2; SPD
[\[Mu], \[Nu], n, nb] FVD[n, \[Nu]] // Contract MTLND
n^{\mu }
[] FCClearScalarProducts