GSLR[p,n,nb]
denotes the perpendicular component in the
lightcone decomposition of the slashed Dirac matrix (\gamma \cdot p) along the vectors
n
and nb
. It corresponds to (\gamma \cdot p)_{\perp}.
If one omits n
and nb
, the program will use
default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, DiracGamma, GALP, GALN, GALR, GSLP, GSLN.
[p, n, nb] GSLR
\bar{\gamma }\cdot \overline{p}_{\perp }
StandardForm[GSLR[p, n, nb] // FCI]
(*DiracGamma[LightConePerpendicularComponent[Momentum[p], Momentum[n], Momentum[nb]]]*)
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[p, n, nb] . GSLP[q, n, nb] // DiracSimplify GSLR
-\frac{1}{4} \overline{n}^2 \left(\overline{\text{nb}}\cdot \overline{q}\right) \left(\bar{\gamma }\cdot \overline{\text{nb}}\right).\left(\bar{\gamma }\cdot \overline{p}_{\perp }\right)-\frac{1}{4} \left(\overline{n}\cdot \overline{\text{nb}}\right) \left(\overline{\text{nb}}\cdot \overline{q}\right) \left(\bar{\gamma }\cdot \overline{n}\right).\left(\bar{\gamma }\cdot \overline{p}_{\perp }\right)
[]
FCClearScalarProducts[n] = 0;
SP[nb] = 0;
SP[n, nb] = 2; SP
[p, n, nb] . GSLP[q, n, nb] // DiracSimplify GSLR
-\frac{1}{2} \left(\overline{\text{nb}}\cdot \overline{q}\right) \left(\bar{\gamma }\cdot \overline{n}\right).\left(\bar{\gamma }\cdot \overline{p}_{\perp }\right)
[] FCClearScalarProducts