FeynCalc manual (development version)

FCSetPauliSigmaScheme

FCSetPauliSigmaScheme[scheme] allows you to specify how Pauli matrices will be handled in D-1 dimensions.

This is mainly related to the commutator of two Pauli matrices, which involves a Levi-Civita tensor. The latter is not a well-defined quantity in D-1 dimensions. Following schemes are supported:

See also

Overview, PauliSigma, FCGetPauliSigmaScheme.

Examples

FCGetPauliSigmaScheme[]

\text{None}

CSID[i, j, k] 
 
PauliSimplify[%, PauliReduce -> True]

\sigma ^i.\sigma ^j.\sigma ^k

\sigma ^i.\sigma ^j.\sigma ^k

FCSetPauliSigmaScheme["Naive"];
FCGetPauliSigmaScheme[]

\text{Naive}

ex = PauliSimplify[CSID[i, j, k], PauliReduce -> True]

i \overset{\text{}}{\epsilon }^{ijk}+D \sigma ^i \delta ^{jk}-D \sigma ^j \delta ^{ik}-3 \sigma ^i \delta ^{jk}+3 \sigma ^j \delta ^{ik}+\sigma ^k \delta ^{ij}

ex // FCE // StandardForm

(*I CLCD[i, j, k] + CSID[k] KDD[i, j] + 3 CSID[j] KDD[i, k] - D CSID[j] KDD[i, k] - 3 CSID[i] KDD[j, k] + D CSID[i] KDD[j, k]*)
FCSetPauliSigmaScheme["None"];