FCMultiLoopTID[amp, {q1, q2, ...}]
does a multi-loop
tensor integral decomposition, transforming the Lorentz indices away
from the loop momenta q1, q2, ...
The decomposition is
applied only to the loop integrals where loop momenta are contracted
with Dirac matrices or epsilon tensors.
[FVD[q1, \[Mu]] FVD[q2, \[Nu]] FAD[q1, q2, {q1 - p1}, {q2 - p1}, {q1 - q2}]]
FCI
[%, {q1, q2}] FCMultiLoopTID
\frac{\text{q1}^{\mu } \;\text{q2}^{\nu }}{\text{q1}^2.\text{q2}^2.(\text{q1}-\text{p1})^2.(\text{q2}-\text{p1})^2.(\text{q1}-\text{q2})^2}
\frac{\text{p1}^{\mu } \;\text{p1}^{\nu }-\text{p1}^2 g^{\mu \nu }}{(1-D) \;\text{p1}^2 \;\text{q1}^2.\text{q2}^2.(\text{q1}-\text{p1})^2.(\text{q1}-\text{q2})^2}-\frac{\text{p1}^{\mu } \;\text{p1}^{\nu }-\text{p1}^2 g^{\mu \nu }}{2 (1-D) \;\text{p1}^2 \;\text{q1}^2.\text{q2}^2.(\text{q1}-\text{p1})^2.(\text{q2}-\text{p1})^2}-\frac{D \;\text{p1}^{\mu } \;\text{p1}^{\nu }-\text{p1}^2 g^{\mu \nu }}{4 (1-D) \;\text{q1}^2.\text{q2}^2.(\text{q1}-\text{p1})^2.(\text{q1}-\text{q2})^2.(\text{q2}-\text{p1})^2}+\frac{D \;\text{p1}^{\mu } \;\text{p1}^{\nu }-\text{p1}^2 g^{\mu \nu }}{2 (1-D) \;\text{p1}^4 \;\text{q1}^2.(\text{q1}-\text{q2})^2.(\text{q2}-\text{p1})^2}