FCLoopReplaceQuadraticEikonalPropagators[topologies]
identifies SFAD
s and CFAD
s in
topologies
that represent mixed quadratic-eikonal
propagators, e.g. [p^2 - 2 p \cdot q].
Using the information on loop momenta provided by the user the routine
will try to rewrite those denominators by completing the square, e.g. as
in [(p-q)^2 - q^2].
This procedure is useful because one cannot easily determine the momentum flow from looking at quadratic-eikonal propagators as it is possible in the case of purely quadratic ones.
For this to work it is crucial to specify the loop momenta via the
LoopMomenta
option as well as the kinematics
(IntermediateSubstitutions
) and the rules for completing
the square (InitialSubstitutions
) on the purely
loop-momentum dependent piece of the propagator (e.g. p_1^2 - 2 p_1 \cdot p_2 + p_2^2 goes to (p_1+p_2)^2.
Internally this routine uses ToGFAD
and
FromGFAD
.
Overview, FCTopology, GFAD, FromGFAD, ToGFAD.
(\text{DataType}[\#,\text{FCVariable}]=\text{True})\&\text{/@}\{\text{gkin},\text{meta},\text{u0b}\};
= {FCTopology[preTopoDia1, {SFAD[{{k2, 0}, {0, 1}, 1}], SFAD[{{k1, 0}, {0, 1}, 1}],
topos [{{k1 + k2, 0}, {0, 1}, 1}], SFAD[{{0, -k1 . nb}, {0, 1}, 1}], SFAD[{{k2, -(meta*u0b*k2 . nb)}, {0, 1}, 1}],
SFAD[{{k1 + k2, -2*gkin*meta*u0b*(k1 + k2) . n}, {0, 1}, 1}], SFAD[{{k1, -2*gkin*meta*k1 . n + meta*u0b*k1 . nb},
SFAD{2*gkin*meta^2*u0b, 1}, 1}], SFAD[{{k1, -2*gkin*meta*u0b*k1 . n + meta*u0b*k1 . nb}, {2*gkin*meta^2*u0b^2, 1}, 1}]},
{k1, k2}, {n, nb}, {Hold[SPD][n] -> 0, Hold[SPD][nb] -> 0, Hold[SPD][n, nb] -> 2}, {}]}
\left\{\text{FCTopology}\left(\text{preTopoDia1},\left\{\frac{1}{(\text{k2}^2+i \eta )},\frac{1}{(\text{k1}^2+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2+i \eta )},\frac{1}{(-\text{k1}\cdot \;\text{nb}+i \eta )},\frac{1}{(\text{k2}^2-\text{meta} \;\text{u0b} (\text{k2}\cdot \;\text{nb})+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2-2 \;\text{gkin} \;\text{meta} \;\text{u0b} ((\text{k1}+\text{k2})\cdot n)+i \eta )},\frac{1}{(\text{k1}^2+\text{meta} \;\text{u0b} (\text{k1}\cdot \;\text{nb})-2 \;\text{gkin} \;\text{meta} (\text{k1}\cdot n)-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}+i \eta )},\frac{1}{(\text{k1}^2+\text{meta} \;\text{u0b} (\text{k1}\cdot \;\text{nb})-2 \;\text{gkin} \;\text{meta} \;\text{u0b} (\text{k1}\cdot n)-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}^2+i \eta )}\right\},\{\text{k1},\text{k2}\},\{n,\text{nb}\},\{\text{Hold}[\text{SPD}][n]\to 0,\text{Hold}[\text{SPD}][\text{nb}]\to 0,\text{Hold}[\text{SPD}][n,\text{nb}]\to 2\},\{\}\right)\right\}
[topos, LoopMomenta -> {k1, k2},
FCLoopReplaceQuadraticEikonalPropagators-> {
InitialSubstitutions [SPD[k1 - k2]] -> SPD[k1 - k2],
ExpandScalarProduct[SPD[k1 + k2]] -> SPD[k1 + k2]},
ExpandScalarProduct-> {SPD[n] -> 0, SPD[nb] -> 0, SPD[n, nb] -> 0}] IntermediateSubstitutions
\left\{\text{FCTopology}\left(\text{preTopoDia1},\left\{\frac{1}{(\text{k2}^2+i \eta )},\frac{1}{(\text{k1}^2+i \eta )},\frac{1}{((\text{k1}+\text{k2})^2+i \eta )},\frac{1}{(-\text{k1}\cdot \;\text{nb}+i \eta )},\frac{1}{((\text{k2}-\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2+i \eta )},\frac{1}{((\text{k1}+\text{k2}-\text{gkin} \;\text{meta} \;\text{u0b} n)^2+i \eta )},\frac{1}{((\text{k1}-\text{gkin} \;\text{meta} n+\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}+i \eta )},\frac{1}{((\text{k1}-\text{gkin} \;\text{meta} \;\text{u0b} n+\frac{\text{meta} \;\text{u0b} \;\text{nb}}{2})^2-2 \;\text{gkin} \;\text{meta}^2 \;\text{u0b}^2+i \eta )}\right\},\{\text{k1},\text{k2}\},\{n,\text{nb}\},\{\text{Hold}[\text{SPD}][n]\to 0,\text{Hold}[\text{SPD}][\text{nb}]\to 0,\text{Hold}[\text{SPD}][n,\text{nb}]\to 2\},\{\}\right)\right\}