ToGFAD[exp]
converts all occurring propagator types
(FAD
, SFAD
, CFAD
) to
GFAD
s. This is mainly useful when doing expansions in
kinematic invariants, where e.g. scalar products may not be appear
explicitly when using FAD
- or
SFAD
-notation.
ToGFAD
is the inverse operation to
FromGFAD
.
Using the option “OnlyMixedQuadraticEikonalPropagators” one can limit the conversion to a particular type of standard and Cartesian propagator denominators that contain both quadratic and eikonal pieces. Those are the ones that usually cause issues when doing topology minimization
Overview, GFAD, SFAD, CFAD, FeynAmpDenominatorExplicit, FromGFAD
[FAD[p]] ToGFAD
\frac{1}{(p^2+i \eta )}
[FAD[p]] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[Pair[Momentum[p, D], Momentum[p, D]], {1, 1}]]*)
[SFAD[{p + q, m^2}]] ToGFAD
\frac{1}{(-m^2+p^2+2 (p\cdot q)+q^2+i \eta )}
[SFAD[{p + q, m^2}]] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]] + Pair[Momentum[q, D], Momentum[q, D]], {1, 1}]]*)
[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}] ToGFAD
\frac{1}{(-m^2+p^2+2 (p\cdot q)+i \eta )}
[SFAD[{p + q, m^2}], FinalSubstitutions -> {SPD[q] -> 0}] // StandardForm
ToGFAD
(*FeynAmpDenominator[GenericPropagatorDenominator[-m^2 + Pair[Momentum[p, D], Momentum[p, D]] + 2 Pair[Momentum[p, D], Momentum[q, D]], {1, 1}]]*)
This is not a mixed quadratic-eikonal propagator so it remains unchanged
[SFAD[{{k2, 0}, {0, 1}, 1}], "OnlyMixedQuadraticEikonalPropagators" -> True,
ToGFAD-> True] // StandardForm
FCE
(*SFAD[{{k2, 0}, {0, 1}, 1}]*)
This is a mixed propagator that will be converted to a
GFAD
[SFAD[{{k1, 2 gkin meta k1 . n - 2 gkin meta u0b k1 . n - meta u0b k1 . nb},
ToGFAD{2 gkin meta^2 u0b - 2 gkin meta^2 u0b^2, 1}, 1}],
"OnlyMixedQuadraticEikonalPropagators" -> True, FCE -> True] // StandardForm
(*GFAD[{{-2 gkin meta^2 u0b + 2 gkin meta^2 u0b^2 + SPD[k1, k1] + 2 gkin meta SPD[k1, n] - 2 gkin meta u0b SPD[k1, n] - meta u0b SPD[k1, nb], 1}, 1}]*)