FCLoopPropagatorsToTopology[{prop1, prop2, ...}]
takes a
list of Pair
s and FeynAmpDenominator
s and
converts it into a list of propagators that can be used to describe a
topology.
The input can also consist of an FCTopology
object or a
list thereof.
Overview, FCLoopIntegralToPropagators.
{FAD[q]}
[%] FCLoopPropagatorsToTopology
\left\{\frac{1}{q^2}\right\}
\left\{q^2\right\}
{FAD[{q, m}]}
[%] FCLoopPropagatorsToTopology
\left\{\frac{1}{q^2-m^2}\right\}
\left\{q^2-m^2\right\}
{FAD[{q, m}], SPD[q, p]}
[%] FCLoopPropagatorsToTopology
\left\{\frac{1}{q^2-m^2},p\cdot q\right\}
\left\{q^2-m^2,p\cdot q\right\}
[{FCTopology[topo1, {SFAD[{{p1, 0}, {0, 1}, 1}],
FCLoopPropagatorsToTopology[{{p3, 0}, {mb^2, 1}, 1}], SFAD[{{p1 + p3, 0}, {mb^2, 1}, 1}], SFAD[{{p1 - q, 0},
SFAD{mb^2, 1}, 1}], SFAD[{{0, p3 . q}, {0, 1}, 1}]}, {p1, p3}, {q}, {}, {}],
[topo1, {SFAD[{{p1, 0}, {mb^2, 1}, 1}], SFAD[{{p3, 0}, {mb^2, 1}, 1}],
FCTopology[{{p1 + p3, 0}, {mb^2, 1}, 1}], SFAD[{{p1 - q, 0}, {mb^2, 1}, 1}],
SFAD[{{0, (p3 + p1) . q}, {0, 1}, 1}]}, {p1, p3}, {q}, {}, {}]}] SFAD
\left( \begin{array}{ccccc} \;\text{p1}^2 & \;\text{p3}^2-\text{mb}^2 & (\text{p1}+\text{p3})^2-\text{mb}^2 & (\text{p1}-q)^2-\text{mb}^2 & \;\text{p3}\cdot q \\ \;\text{p1}^2-\text{mb}^2 & \;\text{p3}^2-\text{mb}^2 & (\text{p1}+\text{p3})^2-\text{mb}^2 & (\text{p1}-q)^2-\text{mb}^2 & (\text{p1}+\text{p3})\cdot q \\ \end{array} \right)