FCLoopIntegralToPropagators[int, {q1, q2, ...}]
is an
auxiliary function that converts the loop integral int
that
depends on the loop momenta q1, q2, ...
to a list of
propagators and scalar products.
All propagators and scalar products that do not depend on the loop
momenta are discarded, unless the Rest
option is set to
True
.
Overview, FCLoopPropagatorsToTopology
[p1]
SFAD
[%, {p1}] FCLoopIntegralToPropagators
\frac{1}{(\text{p1}^2+i \eta )}
\left\{\frac{1}{(\text{p1}^2+i \eta )}\right\}
[p1, p2]
SFAD
[%, {p1, p2}] FCLoopIntegralToPropagators
\frac{1}{(\text{p1}^2+i \eta ).(\text{p2}^2+i \eta )}
\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )}\right\}
If the integral contains propagators raised to integer powers, only one propagator will appear in the output.
= SPD[q, p] SFAD[q, q - p, q - p] int
\frac{p\cdot q}{(q^2+i \eta ).((q-p)^2+i \eta )^2}
[int, {q}] FCLoopIntegralToPropagators
\left\{(p\cdot q+i \eta ),\frac{1}{(q^2+i \eta )},\frac{1}{((q-p)^2+i \eta )}\right\}
However, setting the option Tally
to True
will count the powers of the appearing propagators.
[int, {q}, Tally -> True] FCLoopIntegralToPropagators
\left( \begin{array}{cc} \frac{1}{(q^2+i \eta )} & 1 \\ (p\cdot q+i \eta ) & 1 \\ \frac{1}{((q-p)^2+i \eta )} & 2 \\ \end{array} \right)
Here is a more realistic 3-loop example
= SFAD[{{-k1, 0}, {mc^2, 1}, 1}] SFAD[{{-k1 - k2, 0}, {mc^2, 1}, 1}] SFAD[{{-k2, 0}, {0, 1}, 1}] SFAD[{{-k2, 0}, {0, 1}, 2}] SFAD[{{-k3, 0}, {mc^2, 1}, 1}] *SFAD[{{k1 - k3 - p1, 0}, {0, 1}, 1}] SFAD[{{-k1 - k2 + k3 + p1, 0}, {0, 1}, 1}] SFAD[{{-k1 - k2 + k3 + p1, 0}, {0, 1}, 2}] int
\frac{1}{(\text{k2}^2+i \eta )^3 (\text{k1}^2-\text{mc}^2+i \eta ) (\text{k3}^2-\text{mc}^2+i \eta ) ((-\text{k1}-\text{k2})^2-\text{mc}^2+i \eta ) ((\text{k1}-\text{k3}-\text{p1})^2+i \eta ) ((-\text{k1}-\text{k2}+\text{k3}+\text{p1})^2+i \eta )^3}
[int, {k1, k2, k3}, Tally -> True] FCLoopIntegralToPropagators
\left( \begin{array}{cc} \frac{1}{(\text{k2}^2+i \eta )} & 3 \\ \frac{1}{(\text{k3}^2-\text{mc}^2+i \eta )} & 1 \\ \frac{1}{(\text{k1}^2-\text{mc}^2+i \eta )} & 1 \\ \frac{1}{((\text{k1}-\text{k3}-\text{p1})^2+i \eta )} & 1 \\ \frac{1}{((-\text{k1}-\text{k2}+\text{k3}+\text{p1})^2+i \eta )} & 3 \\ \frac{1}{((-\text{k1}-\text{k2})^2-\text{mc}^2+i \eta )} & 1 \\ \end{array} \right)