FeynCalc manual (development version)

FCFeynmanProjectivize

FCFeynmanProjectivize[int, x] checks if the given Feynman parameter integral (without prefactors) depending on x[1], x[2], … is a projective form. If this is not the case, the integral will be projectivized.

Projectivity is a necessary condition for computing the integral with the aid of the Cheng-Wu theorem

See also

Overview, FCFeynmanParametrize, FCFeynmanPrepare, FCFeynmanProjectiveQ.

Examples

int = SFAD[{p3, mg^2}] SFAD[{p3 - p1, mg^2}] SFAD[{{0, -2 p1 . q}}]

\frac{1}{(\text{p3}^2-\text{mg}^2+i \eta ) ((\text{p3}-\text{p1})^2-\text{mg}^2+i \eta ) (-2 (\text{p1}\cdot q)+i \eta )}

fp = FCFeynmanParametrize[int, {p1, p3}, Names -> x, Indexed -> True, FCReplaceD -> {D -> 4 - 2 ep}, 
   Simplify -> True, Assumptions -> {mg > 0, ep > 0}, FinalSubstitutions -> {SPD[q] -> qq, mg^2 -> mg2}]

\left\{(x(2) x(3))^{3 \;\text{ep}-3} \left((x(2)+x(3)) \left(\text{mg2} x(2) x(3)+\text{qq} x(1)^2\right)\right)^{1-2 \;\text{ep}},-\Gamma (2 \;\text{ep}-1),\{x(1),x(2),x(3)\}\right\}

FCFeynmanProjectivize[fp[[1]], x]

\text{FCFeynmanProjectivize: The integral is already projective, no further transformations are required.}

(x(2) x(3))^{3 \;\text{ep}-3} \left((x(2)+x(3)) \left(\text{mg2} x(2) x(3)+\text{qq} x(1)^2\right)\right)^{1-2 \;\text{ep}}

FCFeynmanProjectivize[(x[1] + x[2])^(-2 + 2*ep)/(mb2*(x[1]^2 + x[1]*x[2] + 
        x[2]^2))^ep, x]

\text{FCFeynmanProjectivize: The integral is already projective, no further transformations are required.}

(x(1)+x(2))^{2 \;\text{ep}-2} \left(\text{mb2} \left(x(1)^2+x(2) x(1)+x(2)^2\right)\right)^{-\text{ep}}

Feynman parametrizations derived from propagator representations should be projective in most cases. However, arbitrary Feynman parameter integrals do not necessarily have this property.

FCFeynmanProjectivize[x[1]^(x - 1) (x[2])^(y - 1), x]

\text{FCFeynmanProjectivize: The integral is not projective, trying to projectivize.}

\text{FCFeynmanProjectivize: Projective transformation successful, the integral is now projective.}

\frac{\left(\frac{x(1)}{x(1)+x(2)}\right)^{x-1} \left(\frac{x(2)}{x(1)+x(2)}\right)^{y-1}}{(x(1)+x(2))^2}