FeynCalc manual (development version)

FCFeynmanPrepare

FCFeynmanPrepare[int, {q1, q2, ...}] is an auxiliary function that returns all necessary building for writing down a Feynman parametrization of the given tensor or scalar multi-loop integral. The integral int can be Lorentzian or Cartesian.

The output of the function is a list given by {U,F, pows, M, Q, J, N, r}, where U and F are the Symanzik polynomials, with U = det M, while pows contains the powers of the occurring propagators. The vector Q and the function J are the usual quantities appearing in the definition of the F`` polynomial.

If the integral has free indices, then N encodes its tensor structure, while r gives its tensor rank. For scalar integrals N is always 1 and r is 0. In N the F-polynomial is not substituted but left as FCGV["F"].

To ensure a certain correspondence between propagators and Feynman parameters, it is also possible to enter the integral as a list of propagators, e.g. FCFeynmanPrepare[{FAD[{q,m1}],FAD[{q-p,m2}],SPD[p,q]},{q}]. In this case the tensor part of the integral should be the very last element of the list.

It is also possible to invoke the function as FCFeynmanPrepare[GLI[...], FCTopology[...]] or FCFeynmanPrepare[FCTopology[...]]. Notice that in this case the value of the option FinalSubstitutions is ignored, as replacement rules will be extracted directly from the definition of the topology.

The definitions of M, Q, J and N follow from Eq. 4.17 in the PhD Thesis of Stefan Jahn and arXiv:1010.1667.The algorithm for deriving the UF-parametrization of a loop integral was adopted from the UF generator available in multiple codes of Alexander Smirnov, such as FIESTA (arXiv:1511.03614) and FIRE (arXiv:1901.07808). The code UF.m is also mentioned in the book “Analytic Tools for Feynman Integrals” by Vladimir Smirnov, Chapter 2.3.

See also

Overview, FCFeynmanParametrize, FCFeynmanProjectivize, FCLoopValidTopologyQ.

Examples

One of the simplest examples is the 1-loop tadpole

FCFeynmanPrepare[FAD[{q, m1}], {q}]

\left\{\text{FCGV}(\text{x})(1),\text{m1}^2 (\text{FCGV}(\text{x})(1))^2,\left( \begin{array}{ccc} \;\text{FCGV}(\text{x})(1) & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} \;\text{FCGV}(\text{x})(1) \\ \end{array} \right),\{0\},-\text{m1}^2 \;\text{FCGV}(\text{x})(1),1,0\right\}

Use the option Names to have specific symbols denoting Feynman parameters

FCFeynmanPrepare[FAD[{q, m1}], {q}, Names -> x]

\left\{x(1),\text{m1}^2 x(1)^2,\left( \begin{array}{ccc} x(1) & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} x(1) \\ \end{array} \right),\{0\},-\text{m1}^2 x(1),1,0\right\}

It is also possible to obtain e.g. x1, x2, x3, ... instead of x[1], x[2], x[3], ...

FCFeynmanPrepare[FAD[{q, m1}], {q}, Names -> x, Indexed -> False]

\left\{\text{x1},\text{m1}^2 \;\text{x1}^2,\left( \begin{array}{ccc} \;\text{x1} & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} \;\text{x1} \\ \end{array} \right),\{0\},-\text{m1}^2 \;\text{x1},1,0\right\}

To fix the correspondence between Feynman parameters and propagators, the latter should be entered as a list

FCFeynmanPrepare[{FAD[{q, m}], FAD[{q - p, m2}], FVD[q, \[Mu]] FVD[q, \[Nu]] FVD[q, \[Rho]]}, {q}, Names -> x]

\left\{x(1)+x(2),m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2),\left( \begin{array}{ccc} x(1) & \frac{1}{q^2-m^2} & 1 \\ x(2) & \frac{1}{(p-q)^2-\text{m2}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} x(1)+x(2) \\ \end{array} \right),\left\{x(2) p^{\text{FCGV}(\text{mu})}\right\},m^2 (-x(1))-\text{m2}^2 x(2)+p^2 x(2),-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\mu } g^{\nu \rho }-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\nu } g^{\mu \rho }-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\rho } g^{\mu \nu }+x(2)^3 \Gamma \left(2-\frac{D}{2}\right) p^{\mu } p^{\nu } p^{\rho },3\right\}

Massless 2-loop self-energy

FCFeynmanPrepare[FAD[p1, p2, Q - p1 - p2, Q - p1, Q - p2], {p1, p2}, Names -> x]

\left\{x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5),-Q^2 (x(1) x(2) x(3)+x(1) x(4) x(3)+x(2) x(4) x(3)+x(1) x(5) x(3)+x(4) x(5) x(3)+x(1) x(2) x(4)+x(1) x(2) x(5)+x(2) x(4) x(5)),\left( \begin{array}{ccc} x(1) & \frac{1}{\text{p1}^2} & 1 \\ x(2) & \frac{1}{\text{p2}^2} & 1 \\ x(3) & \frac{1}{(\text{p1}-Q)^2} & 1 \\ x(4) & \frac{1}{(\text{p2}-Q)^2} & 1 \\ x(5) & \frac{1}{(\text{p1}+\text{p2}-Q)^2} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3)+x(5) & x(5) \\ x(5) & x(2)+x(4)+x(5) \\ \end{array} \right),\left\{(x(3)+x(5)) Q^{\text{FCGV}(\text{mu})},(x(4)+x(5)) Q^{\text{FCGV}(\text{mu})}\right\},Q^2 (x(3)+x(4)+x(5)),1,0\right\}

Factorizing integrals also work

FCFeynmanPrepare[FAD[{p1, m1}, {p2, m2}, Q - p1, Q - p2], {p1, p2}, Names -> x]

\left\{(x(1)+x(3)) (x(2)+x(4)),\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)-Q^2 x(1) x(2) x(3)-Q^2 x(1) x(2) x(4)-Q^2 x(1) x(3) x(4)-Q^2 x(2) x(3) x(4),\left( \begin{array}{ccc} x(1) & \frac{1}{\text{p1}^2-\text{m1}^2} & 1 \\ x(2) & \frac{1}{\text{p2}^2-\text{m2}^2} & 1 \\ x(3) & \frac{1}{(\text{p1}-Q)^2} & 1 \\ x(4) & \frac{1}{(\text{p2}-Q)^2} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3) & 0 \\ 0 & x(2)+x(4) \\ \end{array} \right),\left\{x(3) Q^{\text{FCGV}(\text{mu})},x(4) Q^{\text{FCGV}(\text{mu})}\right\},\text{m1}^2 (-x(1))-\text{m2}^2 x(2)+Q^2 x(3)+Q^2 x(4),1,0\right\}

Cartesian propagators are equally supported

FCFeynmanPrepare[CSPD[q, p] CFAD[{q, m}, {q - p, m2}], {q}, Names -> x]

\left\{x(1)+x(2),\frac{1}{4} \left(4 m x(1)^2+4 m x(2) x(1)+4 \;\text{m2} x(2) x(1)+4 \;\text{m2} x(2)^2+4 p^2 x(2) x(1)-p^2 x(3)^2+4 p^2 x(2) x(3)\right),\left( \begin{array}{ccc} x(1) & \frac{1}{(q^2+m-i \eta )} & 1 \\ x(2) & \frac{1}{((p-q)^2+\text{m2}-i \eta )} & 1 \\ x(3) & p\cdot q & -1 \\ \end{array} \right),\left( \begin{array}{c} x(1)+x(2) \\ \end{array} \right),\left\{\frac{1}{2} (2 x(2)-x(3)) p^{\text{FCGV}(\text{i})}\right\},m x(1)+\text{m2} x(2)+p^2 x(2),1,0\right\}

FCFeynmanPrepare also works with FCTopology and GLI objects

topo1 = FCTopology["prop2Lv1", {SFAD[{p1, m1^2}], SFAD[{p2, m2^2}], 
     SFAD[p1 - q], SFAD[p2 - q], SFAD[{p1 - p2, m3^2}]}, {p1, p2}, {Q}, {}, {}] 
 
topo2 = FCTopology["prop2Lv2", {SFAD[{p1, m1^2}], SFAD[{p2, m2^2}], 
    SFAD[{p1 - q, M^2}], SFAD[{p2 - q, M^2}], SFAD[p1 - p2]}, {p1, p2}, {Q}, {}, {}]

\text{FCTopology}\left(\text{prop2Lv1},\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-q)^2+i \eta )},\frac{1}{((\text{p2}-q)^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\},\{\}\right)

\text{FCTopology}\left(\text{prop2Lv2},\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-q)^2-M^2+i \eta )},\frac{1}{((\text{p2}-q)^2-M^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\},\{\}\right)

FCFeynmanPrepare[topo1, Names -> x]

\left\{x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5),\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)+\text{m3}^2 x(1) x(5)^2+\text{m3}^2 x(2) x(5)^2+\text{m3}^2 x(3) x(5)^2+\text{m3}^2 x(4) x(5)^2+\text{m3}^2 x(1) x(2) x(5)+\text{m3}^2 x(2) x(3) x(5)+\text{m3}^2 x(1) x(4) x(5)+\text{m3}^2 x(3) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5),\left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right),\left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\},\text{m1}^2 (-x(1))-\text{m2}^2 x(2)-\text{m3}^2 x(5)+q^2 x(3)+q^2 x(4),1,0\right\}

FCFeynmanPrepare[{topo1, topo2}, Names -> x]

\left( \begin{array}{cccccccc} x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5) & \;\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)+\text{m3}^2 x(1) x(5)^2+\text{m3}^2 x(2) x(5)^2+\text{m3}^2 x(3) x(5)^2+\text{m3}^2 x(4) x(5)^2+\text{m3}^2 x(1) x(2) x(5)+\text{m3}^2 x(2) x(3) x(5)+\text{m3}^2 x(1) x(4) x(5)+\text{m3}^2 x(3) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(2)-\text{m3}^2 x(5)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5) & M^2 x(2) x(3)^2+M^2 x(1) x(4)^2+M^2 x(3) x(4)^2+M^2 x(1) x(2) x(3)+M^2 x(3)^2 x(4)+M^2 x(1) x(2) x(4)+M^2 x(1) x(3) x(4)+M^2 x(2) x(3) x(4)+M^2 x(3)^2 x(5)+M^2 x(4)^2 x(5)+M^2 x(1) x(3) x(5)+M^2 x(2) x(3) x(5)+M^2 x(1) x(4) x(5)+M^2 x(2) x(4) x(5)+2 M^2 x(3) x(4) x(5)+\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2-M^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2-M^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & M^2 (-x(3))-M^2 x(4)-\text{m1}^2 x(1)-\text{m2}^2 x(2)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ \end{array} \right)

FCFeynmanPrepare[{GLI["prop2Lv1", {1, 1, 1, 1, 0}], GLI["prop2Lv2", {1, 1, 0, 0, 1}]}, 
  {topo1, topo2}, Names -> x]

\left( \begin{array}{cccccccc} (x(1)+x(3)) (x(2)+x(4)) & \;\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3) & 0 \\ 0 & x(2)+x(4) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(2)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ x(1) x(2)+x(3) x(2)+x(1) x(3) & (x(1) x(2)+x(3) x(2)+x(1) x(3)) \left(\text{m1}^2 x(1)+\text{m2}^2 x(3)\right) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{((\text{p1}-\text{p2})^2+i \eta )} & 1 \\ x(3) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(2) & -x(2) \\ -x(2) & x(2)+x(3) \\ \end{array} \right) & \{0,0\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(3) & 1 & 0 \\ \end{array} \right)

FCFeynmanPrepare can also handle products of GLIs. In this case it will automatically introduce dummy names for the loop momenta (the name generation is controlled by the LoopMomentum option).

topo = FCTopology[
   prop2Ltopo13311, {SFAD[{{I*p1, 0}, {-m1^2, -1}, 1}], SFAD[{{I*(p1 + q1), 0}, {-
        m3^2, -1}, 1}], SFAD[{{I*p3, 0}, {-m3^2, -1}, 1}], SFAD[{{I*(p3 + q1), 0}, {-m1^2, 
       -1}, 1}], SFAD[{{I*(p1 - p3), 0}, {-m1^2, -1}, 1}]}, {p1, p3}, {q1}, {SPD[q1, q1] -> m1^2}, {}]

\text{FCTopology}\left(\text{prop2Ltopo13311},\left\{\frac{1}{(-\text{p1}^2+\text{m1}^2-i \eta )},\frac{1}{(-(\text{p1}+\text{q1})^2+\text{m3}^2-i \eta )},\frac{1}{(-\text{p3}^2+\text{m3}^2-i \eta )},\frac{1}{(-(\text{p3}+\text{q1})^2+\text{m1}^2-i \eta )},\frac{1}{(-(\text{p1}-\text{p3})^2+\text{m1}^2-i \eta )}\right\},\{\text{p1},\text{p3}\},\{\text{q1}\},\left\{\text{q1}^2\to \;\text{m1}^2\right\},\{\}\right)

FCFeynmanPrepare[GLI[prop2Ltopo13311, {1, 0, 0, 0, 0}]^2, topo, Names -> x, FCE -> True, 
  LoopMomenta -> Function[{x, y}, lmom[x, y]]]

\left\{x(1) x(2),-\text{m1}^2 x(1) x(2) (x(1)+x(2)),\left( \begin{array}{ccc} x(1) & \frac{1}{(-\text{lmom}(1,1)^2+\text{m1}^2-i \eta )} & 1 \\ x(2) & \frac{1}{(-\text{lmom}(2,1)^2+\text{m1}^2-i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} -x(1) & 0 \\ 0 & -x(2) \\ \end{array} \right),\{0,0\},\text{m1}^2 (x(1)+x(2)),1,0\right\}