FCFeynmanPrepare[int, {q1, q2, ...}]
is an auxiliary
function that returns all necessary building for writing down a Feynman
parametrization of the given tensor or scalar multi-loop integral. The
integral int can be Lorentzian or Cartesian.
The output of the function is a list given by
{U,F, pows, M, Q, J, N, r}
, where U
and
F
are the Symanzik polynomials, with U = det M, while pows
contains
the powers of the occurring propagators. The vector Q
and
the function J
are the usual quantities appearing in the
definition of the F`` polynomial.
If the integral has free indices, then N
encodes its
tensor structure, while r
gives its tensor rank. For scalar
integrals N
is always 1
and r is
0
. In N
the F
-polynomial is not
substituted but left as FCGV["F"]
.
To ensure a certain correspondence between propagators and Feynman
parameters, it is also possible to enter the integral as a list of
propagators,
e.g. FCFeynmanPrepare[{FAD[{q,m1}],FAD[{q-p,m2}],SPD[p,q]},{q}]
.
In this case the tensor part of the integral should be the very last
element of the list.
It is also possible to invoke the function as
FCFeynmanPrepare[GLI[...], FCTopology[...]]
or
FCFeynmanPrepare[FCTopology[...]]
. Notice that in this case
the value of the option FinalSubstitutions
is ignored, as
replacement rules will be extracted directly from the definition of the
topology.
The definitions of M
, Q
, J
and
N
follow from Eq. 4.17 in the PhD Thesis of Stefan
Jahn and arXiv:1010.1667.The algorithm
for deriving the UF-parametrization of a loop integral was adopted from
the UF generator available in multiple codes of Alexander Smirnov, such
as FIESTA (arXiv:1511.03614) and FIRE
(arXiv:1901.07808). The
code UF.m is also mentioned in the book “Analytic Tools for Feynman
Integrals” by Vladimir Smirnov, Chapter 2.3.
Overview, FCFeynmanParametrize, FCFeynmanProjectivize, FCLoopValidTopologyQ.
One of the simplest examples is the 1-loop tadpole
[FAD[{q, m1}], {q}] FCFeynmanPrepare
\left\{\text{FCGV}(\text{x})(1),\text{m1}^2 (\text{FCGV}(\text{x})(1))^2,\left( \begin{array}{ccc} \;\text{FCGV}(\text{x})(1) & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} \;\text{FCGV}(\text{x})(1) \\ \end{array} \right),\{0\},-\text{m1}^2 \;\text{FCGV}(\text{x})(1),1,0\right\}
Use the option Names
to have specific symbols denoting
Feynman parameters
[FAD[{q, m1}], {q}, Names -> x] FCFeynmanPrepare
\left\{x(1),\text{m1}^2 x(1)^2,\left( \begin{array}{ccc} x(1) & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} x(1) \\ \end{array} \right),\{0\},-\text{m1}^2 x(1),1,0\right\}
It is also possible to obtain e.g. x1, x2, x3, ...
instead of x[1], x[2], x[3], ...
[FAD[{q, m1}], {q}, Names -> x, Indexed -> False] FCFeynmanPrepare
\left\{\text{x1},\text{m1}^2 \;\text{x1}^2,\left( \begin{array}{ccc} \;\text{x1} & \frac{1}{q^2-\text{m1}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} \;\text{x1} \\ \end{array} \right),\{0\},-\text{m1}^2 \;\text{x1},1,0\right\}
To fix the correspondence between Feynman parameters and propagators, the latter should be entered as a list
[{FAD[{q, m}], FAD[{q - p, m2}], FVD[q, \[Mu]] FVD[q, \[Nu]] FVD[q, \[Rho]]}, {q}, Names -> x] FCFeynmanPrepare
\left\{x(1)+x(2),m^2 x(1)^2+m^2 x(1) x(2)+\text{m2}^2 x(2)^2+\text{m2}^2 x(1) x(2)-p^2 x(1) x(2),\left( \begin{array}{ccc} x(1) & \frac{1}{q^2-m^2} & 1 \\ x(2) & \frac{1}{(p-q)^2-\text{m2}^2} & 1 \\ \end{array} \right),\left( \begin{array}{c} x(1)+x(2) \\ \end{array} \right),\left\{x(2) p^{\text{FCGV}(\text{mu})}\right\},m^2 (-x(1))-\text{m2}^2 x(2)+p^2 x(2),-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\mu } g^{\nu \rho }-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\nu } g^{\mu \rho }-\frac{1}{2} x(2) \Gamma \left(1-\frac{D}{2}\right) \;\text{FCGV}(\text{F}) p^{\rho } g^{\mu \nu }+x(2)^3 \Gamma \left(2-\frac{D}{2}\right) p^{\mu } p^{\nu } p^{\rho },3\right\}
Massless 2-loop self-energy
[FAD[p1, p2, Q - p1 - p2, Q - p1, Q - p2], {p1, p2}, Names -> x] FCFeynmanPrepare
\left\{x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5),-Q^2 (x(1) x(2) x(3)+x(1) x(4) x(3)+x(2) x(4) x(3)+x(1) x(5) x(3)+x(4) x(5) x(3)+x(1) x(2) x(4)+x(1) x(2) x(5)+x(2) x(4) x(5)),\left( \begin{array}{ccc} x(1) & \frac{1}{\text{p1}^2} & 1 \\ x(2) & \frac{1}{\text{p2}^2} & 1 \\ x(3) & \frac{1}{(\text{p1}-Q)^2} & 1 \\ x(4) & \frac{1}{(\text{p2}-Q)^2} & 1 \\ x(5) & \frac{1}{(\text{p1}+\text{p2}-Q)^2} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3)+x(5) & x(5) \\ x(5) & x(2)+x(4)+x(5) \\ \end{array} \right),\left\{(x(3)+x(5)) Q^{\text{FCGV}(\text{mu})},(x(4)+x(5)) Q^{\text{FCGV}(\text{mu})}\right\},Q^2 (x(3)+x(4)+x(5)),1,0\right\}
Factorizing integrals also work
[FAD[{p1, m1}, {p2, m2}, Q - p1, Q - p2], {p1, p2}, Names -> x] FCFeynmanPrepare
\left\{(x(1)+x(3)) (x(2)+x(4)),\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)-Q^2 x(1) x(2) x(3)-Q^2 x(1) x(2) x(4)-Q^2 x(1) x(3) x(4)-Q^2 x(2) x(3) x(4),\left( \begin{array}{ccc} x(1) & \frac{1}{\text{p1}^2-\text{m1}^2} & 1 \\ x(2) & \frac{1}{\text{p2}^2-\text{m2}^2} & 1 \\ x(3) & \frac{1}{(\text{p1}-Q)^2} & 1 \\ x(4) & \frac{1}{(\text{p2}-Q)^2} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3) & 0 \\ 0 & x(2)+x(4) \\ \end{array} \right),\left\{x(3) Q^{\text{FCGV}(\text{mu})},x(4) Q^{\text{FCGV}(\text{mu})}\right\},\text{m1}^2 (-x(1))-\text{m2}^2 x(2)+Q^2 x(3)+Q^2 x(4),1,0\right\}
Cartesian propagators are equally supported
[CSPD[q, p] CFAD[{q, m}, {q - p, m2}], {q}, Names -> x] FCFeynmanPrepare
\left\{x(1)+x(2),\frac{1}{4} \left(4 m x(1)^2+4 m x(2) x(1)+4 \;\text{m2} x(2) x(1)+4 \;\text{m2} x(2)^2+4 p^2 x(2) x(1)-p^2 x(3)^2+4 p^2 x(2) x(3)\right),\left( \begin{array}{ccc} x(1) & \frac{1}{(q^2+m-i \eta )} & 1 \\ x(2) & \frac{1}{((p-q)^2+\text{m2}-i \eta )} & 1 \\ x(3) & p\cdot q & -1 \\ \end{array} \right),\left( \begin{array}{c} x(1)+x(2) \\ \end{array} \right),\left\{\frac{1}{2} (2 x(2)-x(3)) p^{\text{FCGV}(\text{i})}\right\},m x(1)+\text{m2} x(2)+p^2 x(2),1,0\right\}
FCFeynmanPrepare
also works with FCTopology
and GLI
objects
= FCTopology["prop2Lv1", {SFAD[{p1, m1^2}], SFAD[{p2, m2^2}],
topo1 [p1 - q], SFAD[p2 - q], SFAD[{p1 - p2, m3^2}]}, {p1, p2}, {Q}, {}, {}]
SFAD
= FCTopology["prop2Lv2", {SFAD[{p1, m1^2}], SFAD[{p2, m2^2}],
topo2 [{p1 - q, M^2}], SFAD[{p2 - q, M^2}], SFAD[p1 - p2]}, {p1, p2}, {Q}, {}, {}] SFAD
\text{FCTopology}\left(\text{prop2Lv1},\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-q)^2+i \eta )},\frac{1}{((\text{p2}-q)^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\},\{\}\right)
\text{FCTopology}\left(\text{prop2Lv2},\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-q)^2-M^2+i \eta )},\frac{1}{((\text{p2}-q)^2-M^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\},\{\}\right)
[topo1, Names -> x] FCFeynmanPrepare
\left\{x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5),\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)+\text{m3}^2 x(1) x(5)^2+\text{m3}^2 x(2) x(5)^2+\text{m3}^2 x(3) x(5)^2+\text{m3}^2 x(4) x(5)^2+\text{m3}^2 x(1) x(2) x(5)+\text{m3}^2 x(2) x(3) x(5)+\text{m3}^2 x(1) x(4) x(5)+\text{m3}^2 x(3) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5),\left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right),\left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\},\text{m1}^2 (-x(1))-\text{m2}^2 x(2)-\text{m3}^2 x(5)+q^2 x(3)+q^2 x(4),1,0\right\}
[{topo1, topo2}, Names -> x] FCFeynmanPrepare
\left( \begin{array}{cccccccc} x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5) & \;\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)+\text{m3}^2 x(1) x(5)^2+\text{m3}^2 x(2) x(5)^2+\text{m3}^2 x(3) x(5)^2+\text{m3}^2 x(4) x(5)^2+\text{m3}^2 x(1) x(2) x(5)+\text{m3}^2 x(2) x(3) x(5)+\text{m3}^2 x(1) x(4) x(5)+\text{m3}^2 x(3) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(2)-\text{m3}^2 x(5)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ x(1) x(2)+x(3) x(2)+x(5) x(2)+x(1) x(4)+x(3) x(4)+x(1) x(5)+x(3) x(5)+x(4) x(5) & M^2 x(2) x(3)^2+M^2 x(1) x(4)^2+M^2 x(3) x(4)^2+M^2 x(1) x(2) x(3)+M^2 x(3)^2 x(4)+M^2 x(1) x(2) x(4)+M^2 x(1) x(3) x(4)+M^2 x(2) x(3) x(4)+M^2 x(3)^2 x(5)+M^2 x(4)^2 x(5)+M^2 x(1) x(3) x(5)+M^2 x(2) x(3) x(5)+M^2 x(1) x(4) x(5)+M^2 x(2) x(4) x(5)+2 M^2 x(3) x(4) x(5)+\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m1}^2 x(1)^2 x(5)+\text{m1}^2 x(1) x(2) x(5)+\text{m1}^2 x(1) x(3) x(5)+\text{m1}^2 x(1) x(4) x(5)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)+\text{m2}^2 x(2)^2 x(5)+\text{m2}^2 x(1) x(2) x(5)+\text{m2}^2 x(2) x(3) x(5)+\text{m2}^2 x(2) x(4) x(5)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4)-q^2 x(1) x(3) x(5)-q^2 x(2) x(3) x(5)-q^2 x(1) x(4) x(5)-q^2 x(2) x(4) x(5) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2-M^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2-M^2+i \eta )} & 1 \\ x(5) & \frac{1}{((\text{p1}-\text{p2})^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3)+x(5) & -x(5) \\ -x(5) & x(2)+x(4)+x(5) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & M^2 (-x(3))-M^2 x(4)-\text{m1}^2 x(1)-\text{m2}^2 x(2)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ \end{array} \right)
[{GLI["prop2Lv1", {1, 1, 1, 1, 0}], GLI["prop2Lv2", {1, 1, 0, 0, 1}]},
FCFeynmanPrepare{topo1, topo2}, Names -> x]
\left( \begin{array}{cccccccc} (x(1)+x(3)) (x(2)+x(4)) & \;\text{m1}^2 x(1)^2 x(2)+\text{m1}^2 x(1) x(2) x(3)+\text{m1}^2 x(1)^2 x(4)+\text{m1}^2 x(1) x(3) x(4)+\text{m2}^2 x(1) x(2)^2+\text{m2}^2 x(2)^2 x(3)+\text{m2}^2 x(1) x(2) x(4)+\text{m2}^2 x(2) x(3) x(4)-q^2 x(1) x(2) x(3)-q^2 x(1) x(2) x(4)-q^2 x(1) x(3) x(4)-q^2 x(2) x(3) x(4) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ x(3) & \frac{1}{((\text{p1}-q)^2+i \eta )} & 1 \\ x(4) & \frac{1}{((\text{p2}-q)^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(3) & 0 \\ 0 & x(2)+x(4) \\ \end{array} \right) & \left\{x(3) q^{\text{FCGV}(\text{mu})},x(4) q^{\text{FCGV}(\text{mu})}\right\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(2)+q^2 x(3)+q^2 x(4) & 1 & 0 \\ x(1) x(2)+x(3) x(2)+x(1) x(3) & (x(1) x(2)+x(3) x(2)+x(1) x(3)) \left(\text{m1}^2 x(1)+\text{m2}^2 x(3)\right) & \left( \begin{array}{ccc} x(1) & \frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )} & 1 \\ x(2) & \frac{1}{((\text{p1}-\text{p2})^2+i \eta )} & 1 \\ x(3) & \frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )} & 1 \\ \end{array} \right) & \left( \begin{array}{cc} x(1)+x(2) & -x(2) \\ -x(2) & x(2)+x(3) \\ \end{array} \right) & \{0,0\} & \;\text{m1}^2 (-x(1))-\text{m2}^2 x(3) & 1 & 0 \\ \end{array} \right)
FCFeynmanPrepare
can also handle products of
GLI
s. In this case it will automatically introduce dummy
names for the loop momenta (the name generation is controlled by the
LoopMomentum
option).
= FCTopology[
topo , {SFAD[{{I*p1, 0}, {-m1^2, -1}, 1}], SFAD[{{I*(p1 + q1), 0}, {-
prop2Ltopo13311^2, -1}, 1}], SFAD[{{I*p3, 0}, {-m3^2, -1}, 1}], SFAD[{{I*(p3 + q1), 0}, {-m1^2,
m3-1}, 1}], SFAD[{{I*(p1 - p3), 0}, {-m1^2, -1}, 1}]}, {p1, p3}, {q1}, {SPD[q1, q1] -> m1^2}, {}]
\text{FCTopology}\left(\text{prop2Ltopo13311},\left\{\frac{1}{(-\text{p1}^2+\text{m1}^2-i \eta )},\frac{1}{(-(\text{p1}+\text{q1})^2+\text{m3}^2-i \eta )},\frac{1}{(-\text{p3}^2+\text{m3}^2-i \eta )},\frac{1}{(-(\text{p3}+\text{q1})^2+\text{m1}^2-i \eta )},\frac{1}{(-(\text{p1}-\text{p3})^2+\text{m1}^2-i \eta )}\right\},\{\text{p1},\text{p3}\},\{\text{q1}\},\left\{\text{q1}^2\to \;\text{m1}^2\right\},\{\}\right)
[GLI[prop2Ltopo13311, {1, 0, 0, 0, 0}]^2, topo, Names -> x, FCE -> True,
FCFeynmanPrepare-> Function[{x, y}, lmom[x, y]]] LoopMomenta
\left\{x(1) x(2),-\text{m1}^2 x(1) x(2) (x(1)+x(2)),\left( \begin{array}{ccc} x(1) & \frac{1}{(-\text{lmom}(1,1)^2+\text{m1}^2-i \eta )} & 1 \\ x(2) & \frac{1}{(-\text{lmom}(2,1)^2+\text{m1}^2-i \eta )} & 1 \\ \end{array} \right),\left( \begin{array}{cc} -x(1) & 0 \\ 0 & -x(2) \\ \end{array} \right),\{0,0\},\text{m1}^2 (x(1)+x(2)),1,0\right\}