Explicit[exp]
inserts explicit expressions of
GluonVertex
, Twist2GluonOperator
,
SUNF
etc. in exp
.
To rewrite the SU(N) structure
constants in terms of traces, please set the corresponding options
SUNF
or SUND
to True
.
Explicit
is also an option for
FieldStrength
, GluonVertex
, SUNF
,
Twist2GluonOperator
etc. If set to True
the
full form of the operator is inserted.
Overview, GluonVertex, Twist2GluonOperator.
= GluonVertex[p, \[Mu], a, q, \[Nu], b, r, \[Rho], c] gv
f^{abc} V^{\mu \nu \rho }(p\text{, }q\text{, }r)
[gv] Explicit
g_s f^{abc} \left(g^{\mu \nu } \left(p^{\rho }-q^{\rho }\right)+g^{\mu \rho } \left(r^{\nu }-p^{\nu }\right)+g^{\nu \rho } \left(q^{\mu }-r^{\mu }\right)\right)
[gv, SUNF -> True] Explicit
2 i g_s \left(\text{tr}\left(T^a.T^c.T^b\right)-\text{tr}\left(T^a.T^b.T^c\right)\right) \left(g^{\mu \nu } \left(p^{\rho }-q^{\rho }\right)+g^{\mu \rho } \left(r^{\nu }-p^{\nu }\right)+g^{\nu \rho } \left(q^{\mu }-r^{\mu }\right)\right)
[p, \[Mu], a, \[Nu], b]
Twist2GluonOperator
[%] Explicit
\frac{1}{2} \left((-1)^m+1\right) \delta ^{ab} \left(O_{\mu \, \nu }^{\text{G2}}(p)\right)
\frac{1}{2} \left((-1)^m+1\right) \delta ^{ab} (\Delta \cdot p)^{m-2} \left(g^{\mu \nu } (\Delta \cdot p)^2+p^2 \Delta ^{\mu } \Delta ^{\nu }-(\Delta \cdot p) \left(\Delta ^{\nu } p^{\mu }+\Delta ^{\mu } p^{\nu }\right)\right)
[\[Mu], \[Nu], a]
FieldStrength
[%] Explicit
F_{\mu \nu }^a
g_s f^{a\text{b19}\;\text{c20}} A_{\mu }^{\text{b19}}.A_{\nu }^{\text{c20}}+\left(\partial _{\mu }A_{\nu }^a\right)-\left(\partial _{\nu }A_{\mu }^a\right)
[SUNF[a, b, c]] Explicit
f^{abc}
[SUNF[a, b, c], SUNF -> True] Explicit
2 i \left(\text{tr}\left(T^a.T^c.T^b\right)-\text{tr}\left(T^a.T^b.T^c\right)\right)
[SUND[a, b, c]] Explicit
d^{abc}
[SUND[a, b, c], SUND -> True] Explicit
2 \;\text{tr}\left(T^a.T^b.T^c\right)+2 \;\text{tr}\left(T^b.T^a.T^c\right)