DoPolarizationSums[exp, k, ...]
acts on an expression
exp
that must contain a polarization vector \varepsilon(k) and its complex conjugate
(e.g. exp
can be a matrix element squared).
Depending on the arguments of the function, it will perform a sum over the polarization of \varepsilon(k) and its c.c.
DoPolarizationSums[exp, k]
sums over the three physical
polarizations of an external massive vector boson with the 4-momentum k
and the mass k^2.DoPolarizationSums[exp, k, 0]
replaces the polarization
sum of an external massless vector boson with the momentum
k
by -g^{\mu \nu}. This
corresponds to the summation over all 4 polarizations, including the
unphysical ones.DoPolarizationSums[exp, k, n]
sums over physical
(transverse) polarizations of an external massless vector boson with the
momentum k
, where n
is an auxiliary 4-vector
from the gauge-dependent polarization sum formula.Cf. PolarizationSum
for more examples and explanations
on different polarizations.
DoPolarizationSums
also work with D-dimensional amplitudes.
Overview, Polarization, PolarizationSum, NumberOfPolarizations, VirtualBoson, Uncontract.
The standard formula for massless vector bosons is valid for all types of the corresponding particles, including gluons.
[]
FCClearScalarProducts
[p] = 0;
SP
[LorentzIndex[\[Mu]], Momentum[Polarization[p, -I]]] Pair[LorentzIndex[\[Nu]],
Pair[Polarization[p, I]]] Momentum
\bar{\varepsilon }^{*\mu }(p) \bar{\varepsilon }^{\nu }(p)
[%, p, n] DoPolarizationSums
-\frac{\overline{n}^2 \overline{p}^{\mu } \overline{p}^{\nu }}{(\overline{n}\cdot \overline{p})^2}-\bar{g}^{\mu \nu }+\frac{\overline{n}^{\nu } \overline{p}^{\mu }}{\overline{n}\cdot \overline{p}}+\frac{\overline{n}^{\mu } \overline{p}^{\nu }}{\overline{n}\cdot \overline{p}}
In QED the gauge invariance ensures the cancellation of the unphysical polarizations so that for photons one can also employ the simpler replacement with the metric tensor.
[]
FCClearScalarProducts
[p] = 0;
SP
[LorentzIndex[\[Mu]], Momentum[Polarization[p, -I]]] Pair[LorentzIndex[\[Nu]],
Pair[Polarization[p, I]]] Momentum
\bar{\varepsilon }^{*\mu }(p) \bar{\varepsilon }^{\nu }(p)
[%, p, 0] DoPolarizationSums
-\bar{g}^{\mu \nu }
You can also use this trick in QCD, provided that the unphysical degrees of freedom are subtracted using ghosts at a later stage.
Notice that in this case you should not make the polarization vectors
transverse using the Transversality
option.
Furthermore, the averaging over the polarizations of the initial gluons must be done on the physical amplitude squared, i.e. after the ghost contributions have been subtracted.
Massive vector bosons (e.g. W or Z) have 3 degrees of freedom and require no auxiliary vector.
[]
FCClearScalarProducts
[p] = m^2;
SP
[LorentzIndex[\[Mu]], Momentum[Polarization[p, -I]]] Pair[LorentzIndex[\[Nu]],
Pair[Polarization[p, I]]] Momentum
\bar{\varepsilon }^{*\mu }(p) \bar{\varepsilon }^{\nu }(p)
[%, p] DoPolarizationSums
\frac{\overline{p}^{\mu } \overline{p}^{\nu }}{m^2}-\bar{g}^{\mu \nu }
A more realistic example of summing over the polarizations of the photons in e^+e^ \to \gamma \gamma
ClearAll[s, t, u];
[];
FCClearScalarProducts
[k1] = 0;
SP
[k2] = 0;
SP
= (-((Spinor[Momentum[p1], 0, 1] . GS[Polarization[k1, I,
amp -> True]] . GS[k2 - p2] . GS[Polarization[k2, I,
Transversality -> True]] . Spinor[-Momentum[p2], 0, 1]*SMP["e"]^2)/t) -
Transversality [Momentum[p1], 0, 1] . GS[Polarization[k2, I,
(Spinor-> True]] . GS[k1 - p2] . GS[Polarization[k1, I,
Transversality -> True]] . Spinor[-Momentum[p2], 0, 1]*SMP["e"]^2)/u)*
Transversality -((Spinor[-Momentum[p2], 0, 1] . GS[Polarization[k1, -I,
(-> True]] . GS[k1 - p2] . GS[Polarization[k2, -I,
Transversality -> True]] . Spinor[Momentum[p1], 0, 1]*
Transversality ["e"]^2)/u) - (Spinor[-Momentum[p2], 0, 1] . GS[Polarization[k2, -I,
SMP-> True]] . GS[k2 - p2] . GS[Polarization[k1, -I,
Transversality -> True]] . Spinor[Momentum[p1], 0, 1]*SMP["e"]^2)/t) Transversality
\left(-\frac{\text{e}^2 \left(\varphi (\overline{\text{p1}})\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(\text{k1})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(\text{k2})\right).\left(\varphi (-\overline{\text{p2}})\right)}{t}-\frac{\text{e}^2 \left(\varphi (\overline{\text{p1}})\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(\text{k2})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(\text{k1})\right).\left(\varphi (-\overline{\text{p2}})\right)}{u}\right) \left(-\frac{\text{e}^2 \left(\varphi (-\overline{\text{p2}})\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{k2})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{k1})\right).\left(\varphi (\overline{\text{p1}})\right)}{t}-\frac{\text{e}^2 \left(\varphi (-\overline{\text{p2}})\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{k1})\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*(\text{k2})\right).\left(\varphi (\overline{\text{p1}})\right)}{u}\right)
// DoPolarizationSums[#, k1, 0] & // DoPolarizationSums[#, k2, 0] & amp
\frac{\text{e}^4 \left(\varphi (-\overline{\text{p2}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\varphi (\overline{\text{p1}})\right) \left(\varphi (\overline{\text{p1}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\varphi (-\overline{\text{p2}})\right)}{t u}+\frac{\text{e}^4 \left(\varphi (\overline{\text{p1}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\varphi (-\overline{\text{p2}})\right) \left(\varphi (-\overline{\text{p2}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\varphi (\overline{\text{p1}})\right)}{t u}+\frac{\text{e}^4 \left(\varphi (\overline{\text{p1}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\varphi (-\overline{\text{p2}})\right) \left(\varphi (-\overline{\text{p2}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k1}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\varphi (\overline{\text{p1}})\right)}{u^2}+\frac{\text{e}^4 \left(\varphi (\overline{\text{p1}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\varphi (-\overline{\text{p2}})\right) \left(\varphi (-\overline{\text{p2}})\right).\bar{\gamma }^{\text{\$MU}(\text{\$29})}.\left(\bar{\gamma }\cdot \left(\overline{\text{k2}}-\overline{\text{p2}}\right)\right).\bar{\gamma }^{\text{\$MU}(\text{\$27})}.\left(\varphi (\overline{\text{p1}})\right)}{t^2}
This is a small piece of the matrix element squared for g g to Q \bar{Q}.
The proper summation over the polarizations of the gluons requires a choice of two auxiliary vectors (unless we subtract the unphysical contributions using ghosts).
It is customary to take the 4-momentum of another gluon as the auxiliary vector in the summation formula.
The option ExtraFactor
is used to average over the
polarizations of the initial gluons.
ClearAll[s, t, u];
[];
FCClearScalarProducts
[p1] = 0;
SP
[p2] = 0; SP
= 1/(s^2 SUNN (1 - SUNN^2) u^2) 2 SMP["g_s"]^4 SP[k1,
amp [p2, -I, Transversality -> True]] SP[k1, Polarization[p2,
PolarizationI, Transversality -> True]] (2 s^2 SP[k1, Polarization[p1, I,
-> True]] SP[k2, Polarization[p1, -I,
Transversality -> True]] + 2 s SUNN^2 t SP[k1, Polarization[p1, I,
Transversality -> True]] SP[k2, Polarization[p1, -I,
Transversality -> True]] + s SUNN^2 u SP[k1, Polarization[p1, I,
Transversality -> True]] SP[k2, Polarization[p1, -I,
Transversality -> True]] + 2 s^2 SP[k1, Polarization[p1, -I,
Transversality -> True]] SP[k2, Polarization[p1, I,
Transversality -> True]] + 2 s SUNN^2 t SP[k1, Polarization[p1, -I,
Transversality -> True]] SP[k2, Polarization[p1, I,
Transversality -> True]] + s SUNN^2 u SP[k1, Polarization[p1, -I,
Transversality -> True]] SP[k2, Polarization[p1, I,
Transversality -> True]] + 2 SUNN^2 u^2 SP[k2,
Transversality [p1, -I, Transversality -> True]] SP[k2,
Polarization[p1, I, Transversality -> True]]) Polarization
\frac{1}{N \left(1-N^2\right) s^2 u^2}2 g_s^4 \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{p2})\right) \left(\overline{\text{k1}}\cdot \bar{\varepsilon }(\text{p2})\right) \left(2 N^2 s t \left(\overline{\text{k1}}\cdot \bar{\varepsilon }(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{p1})\right)+2 N^2 s t \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }(\text{p1})\right)+N^2 s u \left(\overline{\text{k1}}\cdot \bar{\varepsilon }(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{p1})\right)+N^2 s u \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }(\text{p1})\right)+2 s^2 \left(\overline{\text{k1}}\cdot \bar{\varepsilon }(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{p1})\right)+2 s^2 \left(\overline{\text{k1}}\cdot \bar{\varepsilon }^*(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }(\text{p1})\right)+2 N^2 u^2 \left(\overline{\text{k2}}\cdot \bar{\varepsilon }^*(\text{p1})\right) \left(\overline{\text{k2}}\cdot \bar{\varepsilon }(\text{p1})\right)\right)
// DoPolarizationSums[#, p1, p2, ExtraFactor -> 1/2] & //
amp [#, p2, p1, ExtraFactor -> 1/2] & // Simplify DoPolarizationSums
-\frac{1}{N \left(N^2-1\right) s^2 u^2 (\overline{\text{p1}}\cdot \overline{\text{p2}})^2}g_s^4 \left(2 \left(\overline{\text{k1}}\cdot \overline{\text{p1}}\right) \left(\overline{\text{k1}}\cdot \overline{\text{p2}}\right)-\overline{\text{k1}}^2 \left(\overline{\text{p1}}\cdot \overline{\text{p2}}\right)\right) \left(s \left(\overline{\text{k1}}\cdot \overline{\text{p2}}\right) \left(\overline{\text{k2}}\cdot \overline{\text{p1}}\right) \left(N^2 (2 t+u)+2 s\right)+s \left(\overline{\text{k1}}\cdot \overline{\text{p1}}\right) \left(\overline{\text{k2}}\cdot \overline{\text{p2}}\right) \left(N^2 (2 t+u)+2 s\right)-2 N^2 s t \left(\overline{\text{k1}}\cdot \overline{\text{k2}}\right) \left(\overline{\text{p1}}\cdot \overline{\text{p2}}\right)-N^2 s u \left(\overline{\text{k1}}\cdot \overline{\text{k2}}\right) \left(\overline{\text{p1}}\cdot \overline{\text{p2}}\right)-2 s^2 \left(\overline{\text{k1}}\cdot \overline{\text{k2}}\right) \left(\overline{\text{p1}}\cdot \overline{\text{p2}}\right)+2 N^2 u^2 \left(\overline{\text{k2}}\cdot \overline{\text{p1}}\right) \left(\overline{\text{k2}}\cdot \overline{\text{p2}}\right)-N^2 u^2 \overline{\text{k2}}^2 \left(\overline{\text{p1}}\cdot \overline{\text{p2}}\right)\right)
We can also do the same calculation in D-dimensions
ClearAll[s, t, u];
[];
FCClearScalarProducts
[p1] = 0;
SPD
[p2] = 0;
SPD
[amp, D] // DoPolarizationSums[#, p1, p2, ExtraFactor -> 1/2] & //
ChangeDimension[#, p2, p1, ExtraFactor -> 1/2] & // Simplify DoPolarizationSums
-\frac{1}{N \left(N^2-1\right) s^2 u^2 (\text{p1}\cdot \;\text{p2})^2}g_s^4 \left(2 (\text{k1}\cdot \;\text{p1}) (\text{k1}\cdot \;\text{p2})-\text{k1}^2 (\text{p1}\cdot \;\text{p2})\right) \left(s (\text{k1}\cdot \;\text{p2}) (\text{k2}\cdot \;\text{p1}) \left(N^2 (2 t+u)+2 s\right)+s (\text{k1}\cdot \;\text{p1}) (\text{k2}\cdot \;\text{p2}) \left(N^2 (2 t+u)+2 s\right)-2 N^2 s t (\text{k1}\cdot \;\text{k2}) (\text{p1}\cdot \;\text{p2})-N^2 s u (\text{k1}\cdot \;\text{k2}) (\text{p1}\cdot \;\text{p2})-2 s^2 (\text{k1}\cdot \;\text{k2}) (\text{p1}\cdot \;\text{p2})+2 N^2 u^2 (\text{k2}\cdot \;\text{p1}) (\text{k2}\cdot \;\text{p2})-\text{k2}^2 N^2 u^2 (\text{p1}\cdot \;\text{p2})\right)
DoPolarizationSums
will complain if you try to sum over
the polarizations of a massless vector boson that is not on-shell
[p, mu] ComplexConjugate[PolarizationVector[p, mu]]
PolarizationVector
[%, p, 0] DoPolarizationSums
\bar{\varepsilon }^{*\text{mu}}(p) \bar{\varepsilon }^{\text{mu}}(p)
-4
The obvious solution to remove this warning is to put the boson on-shell
[]
FCClearScalarProducts
[p, p] = 0
ScalarProduct
[p, mu] ComplexConjugate[PolarizationVector[p, mu]]
PolarizationVector
[%, p, 0] DoPolarizationSums
0
\bar{\varepsilon }^{*\text{mu}}(p) \bar{\varepsilon }^{\text{mu}}(p)
-4
However, if you have a massless virtual boson in the final state that
by definition cannot be on-shell, (e.g. in the process q \bar{q} \to g \gamma^\ast), you can tell
this to the function by setting the option VirtualBoson
to
True
.
[]
FCClearScalarProducts
[p, mu] ComplexConjugate[PolarizationVector[p, mu]]
PolarizationVector
[%, p, 0, VirtualBoson -> True] DoPolarizationSums
\bar{\varepsilon }^{*\text{mu}}(p) \bar{\varepsilon }^{\text{mu}}(p)
-4
It may happen that your expression is not directly proportional to a
pair of polarization vectors. In this case terms that are free of
polarization vectors will be multiplied by the suitable number of
polarizations. This behavior is controlled by the option
NumberOfPolarizations
. The default value
Automatic
means that the function will automatically figure
out the correct number of polarizations.
Here we have 2 physical polarizations (massless vector boson)
[];
FCClearScalarProducts
[p, p] = 0;
ScalarProduct
[p, mu] ComplexConjugate[PolarizationVector[p, mu]] + xyz
PolarizationVector
[%, p, n] DoPolarizationSums
\bar{\varepsilon }^{*\text{mu}}(p) \bar{\varepsilon }^{\text{mu}}(p)+\text{xyz}
\text{DoPolarizationSums: The input expression contains terms free of polarization vectors. Those will be multiplied with the number of polarizations given by }2.
2 \;\text{xyz}-2
In D dimensions the number of polarizations becomes D-2
[];
FCClearScalarProducts
[p, p] = 0;
ScalarProduct
[PolarizationVector[p, mu]*
ChangeDimension[PolarizationVector[p, mu]] + xyz, D]
ComplexConjugate
[%, p, n] DoPolarizationSums
\varepsilon ^{*\text{mu}}(p) \varepsilon ^{\text{mu}}(p)+\text{xyz}
\text{DoPolarizationSums: The input expression contains terms free of polarization vectors. Those will be multiplied with the number of polarizations given by }D-2.
(D-2) \;\text{xyz}-D+2
A massive vector boson has 3 physical polarizations in 4 dimensions
[];
FCClearScalarProducts
[p, p] = M^2;
ScalarProduct
[p, mu] ComplexConjugate[PolarizationVector[p, mu]] + xyz
PolarizationVector
[%, p] DoPolarizationSums
\bar{\varepsilon }^{*\text{mu}}(p) \bar{\varepsilon }^{\text{mu}}(p)+\text{xyz}
\text{DoPolarizationSums: The input expression contains terms free of polarization vectors. Those will be multiplied with the number of polarizations given by }3.
3 \;\text{xyz}-3
or D-1 physical polarizations in D dimensions
[];
FCClearScalarProducts
[p, p] = M^2;
ScalarProduct
[PolarizationVector[p, mu]*
ChangeDimension[PolarizationVector[p, mu]] + xyz, D]
ComplexConjugate
[%, p] DoPolarizationSums
\varepsilon ^{*\text{mu}}(p) \varepsilon ^{\text{mu}}(p)+\text{xyz}
\text{DoPolarizationSums: The input expression contains terms free of polarization vectors. Those will be multiplied with the number of polarizations given by }D-1.
(D-1) \;\text{xyz}-D+1
In the case of a standalone expression that contains no polarization vectors whatsoever, the function has no way to determine the correct number of polarizations.
[xyz, p, n] DoPolarizationSums
\text{\$Aborted}
Here additional user input is needed
[xyz, p, NumberOfPolarizations -> 2] DoPolarizationSums
\text{DoPolarizationSums: The input expression contains terms free of polarization vectors. Those will be multiplied with the number of polarizations given by }2.
2 \;\text{xyz}