Uncontract[exp, q1, q2, ...] uncontracts
Eps and DiracGamma.
Uncontract[exp, q1, q2, Pair -> {p}] uncontracts also
p \cdot q_1 and p \cdot q_2;
The option Pair -> All uncontracts all momenta except
OPEDelta.
LC[\[Mu], \[Nu]][p, q]
Uncontract[%, p]\bar{\epsilon }^{\mu \nu \overline{p}\overline{q}}
\overline{p}^{\text{\$AL}(\text{\$19})} \bar{\epsilon }^{\mu \nu \;\text{\$AL}(\text{\$19})\overline{q}}
GS[p]
Uncontract[%, p]\bar{\gamma }\cdot \overline{p}
\bar{\gamma }^{\text{\$AL}(\text{\$20})} \overline{p}^{\text{\$AL}(\text{\$20})}
Uncontract[LC[\[Mu], \[Nu]][p, q], p, q]\overline{p}^{\text{\$AL}(\text{\$22})} \overline{q}^{\text{\$AL}(\text{\$21})} \left(-\bar{\epsilon }^{\mu \nu \;\text{\$AL}(\text{\$21})\text{\$AL}(\text{\$22})}\right)
By default scalar products are not uncontracted.
Uncontract[SP[p, q], q]\overline{p}\cdot \overline{q}
Use the option Pair->All to make the function take
care of the scalar products as well
Uncontract[SP[p, q], q, Pair -> All]\overline{p}^{\text{\$AL}(\text{\$23})} \overline{q}^{\text{\$AL}(\text{\$23})}
Uncontract[SP[p, q]^2, q, Pair -> All]\overline{p}^{\text{\$AL}(\text{\$24})} \overline{p}^{\text{\$AL}(\text{\$25})} \overline{q}^{\text{\$AL}(\text{\$24})} \overline{q}^{\text{\$AL}(\text{\$25})}
For Cartesian scalar products you need to use the option
CartesianPair->All
Uncontract[CSP[p, q], q, Pair -> All]\overline{p}\cdot \overline{q}
Uncontract[CSP[p, q], q, CartesianPair -> All]\overline{p}^{\text{\$AL}(\text{\$26})} \overline{q}^{\text{\$AL}(\text{\$26})}