FeynCalc manual (development version)

DiracChainCombine

DiracChainCombine[exp] is (nearly) the inverse operation to DiracChainExpand.

See also

Overview, DiracChain, DCHN, DiracIndex, DiracIndexDelta, DIDelta, DiracChainJoin, DiracChainExpand, DiracChainFactor.

Examples

(DCHN[GSD[q], Dir3, Dir4] FAD[{k, me}])/(2 SPD[q, q]) + 1/(2 SPD[q, q]) FAD[k, 
     {k - q, me}] (-2 DCHN[GSD[q], Dir3, Dir4] SPD[q, q] + 2 DCHN[1, Dir3, Dir4] me SPD[q, q] + 
      DCHN[GSD[q], Dir3, Dir4] (-me^2 + SPD[q, q])) 
 
DiracChainCombine[%]

\frac{\left(q^2-\text{me}^2\right) (\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}+2 \;\text{me} q^2 (1)_{\text{Dir3}\;\text{Dir4}}-2 q^2 (\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 k^2.\left((k-q)^2-\text{me}^2\right)}+\frac{(\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 \left(k^2-\text{me}^2\right)}

\frac{\left(\left(q^2-\text{me}^2\right) \gamma \cdot q+2 \;\text{me} q^2-2 q^2 \gamma \cdot q\right){}_{\text{Dir3}\;\text{Dir4}}}{2 q^2 k^2.\left((k-q)^2-\text{me}^2\right)}+\frac{(\gamma \cdot q)_{\text{Dir3}\;\text{Dir4}}}{2 q^2 \left(k^2-\text{me}^2\right)}