FeynCalc manual (development version)

DiracChain

DiracChain[x, i, j] denotes a chain of Dirac matrices x, where the Dirac indices i and j are explicit.

See also

Overview, DiracChain, DCHN, DiracIndex, DiracIndexDelta, DiracChainJoin, DiracChainExpand, DiracChainFactor.

Examples

A standalone Dirac matrix

DiracChain[DiracGamma[LorentzIndex[\[Mu]]], DiracIndex[i], DiracIndex[j]]

\left(\bar{\gamma }^{\mu }\right){}_{ij}

A chain of Dirac matrices with open indices

DiracChain[DiracGamma[LorentzIndex[\[Mu], D], D] . DiracGamma[LorentzIndex[\[Nu], D], D], DiracIndex[i], DiracIndex[j]]

\left(\gamma ^{\mu }.\gamma ^{\nu }\right){}_{ij}

A DiracChain with only two arguments denotes a spinor component

DiracChain[Spinor[Momentum[p], m], DiracIndex[i]]

\left(\varphi (\overline{p},m)\right)_i

DiracChain[Spinor[Momentum[-p], m], DiracIndex[i]]

\left(\varphi (-\overline{p},m)\right)_i

DiracChain[DiracIndex[i], Spinor[Momentum[p], m]]

\left(\varphi (\overline{p},m)\right)_i

DiracChain[DiracIndex[i], Spinor[Momentum[-p], m]]

\left(\varphi (-\overline{p},m)\right)_i

The chain may also be partially open or closed

DiracChain[DiracGamma[LorentzIndex[\[Mu]]] . (m + DiracGamma[Momentum[p]]) . DiracGamma[LorentzIndex[\[Nu]]], Spinor[Momentum[p], m, 1], DiracIndex[j]]

\left(\varphi (\overline{p},m).\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}+m\right).\bar{\gamma }^{\nu }\right){}_j

DiracChain[DiracGamma[LorentzIndex[\[Mu]]] . (m + DiracGamma[Momentum[p]]) . DiracGamma[LorentzIndex[\[Nu]]], DiracIndex[i], Spinor[Momentum[p], m, 1]]

\left(\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}+m\right).\bar{\gamma }^{\nu }.\varphi (\overline{p},m)\right){}_i

DiracChain[DiracGamma[LorentzIndex[\[Mu]]] . (m + DiracGamma[Momentum[p]]) . DiracGamma[LorentzIndex[\[Nu]]], Spinor[Momentum[p1], m1, 1], Spinor[Momentum[p2], m2, 1]]

\left(\varphi (\overline{\text{p1}},\text{m1}).\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}+m\right).\bar{\gamma }^{\nu }.\varphi (\overline{\text{p2}},\text{m2})\right)

DiracChain[1, Spinor[Momentum[p1], m1, 1], Spinor[Momentum[p2], m2, 1]]

\left(\varphi (\overline{\text{p1}},\text{m1}).\varphi (\overline{\text{p2}},\text{m2})\right)