ChangeDimension[exp, dim]
changes all
LorentzIndex
and Momentum
symbols in
exp
to dimension dim
(and also
Levi-Civita-tensors, Dirac slashes and Dirac matrices).
Notice that the dimension of CartesianIndex
and
CartesianMomentum
objects will be changed to
dim-1
, not dim
.
Overview, LorentzIndex, Momentum, DiracGamma, Eps.
Remember that LorentzIndex[mu, 4]
is simplified to
LorentzIndex[mu]
and Momentum[p, 4]
to
Momentum[p]
. Thus the following objects are defined in four
dimensions.
{LorentzIndex[\[Mu]], Momentum[p]}
= ChangeDimension[%, D] ex
\left\{\mu ,\overline{p}\right\}
\{\mu ,p\}
// StandardForm
ex
(*{LorentzIndex[\[Mu], D], Momentum[p, D]}*)
This changes all non-4-dimensional objects to 4-dimensional ones
[%%, 4] // StandardForm
ChangeDimension
(*{LorentzIndex[\[Mu]], Momentum[p]}*)
Consider the following list of 4- and D-dimensional objects
{GA[\[Mu], \[Nu]] MT[\[Mu], \[Nu]], GAD[\[Mu], \[Nu]] MTD[\[Mu], \[Nu]] f[D]}
/@ Contract /@ %
DiracTrick
/@ Contract /@ ChangeDimension[%%, n] DiracTrick
\left\{\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu } \bar{g}^{\mu \nu },f(D) \gamma ^{\mu }.\gamma ^{\nu } g^{\mu \nu }\right\}
\{4,D f(D)\}
\{n,n f(D)\}
Any explicit occurrence of D (like
in f(D)) is not replaced by
ChangeDimension
.
[\[Mu], \[Nu], \[Rho], \[Sigma]]
LC
[%, D]
ChangeDimension
[Contract[%^2]] Factor2
\bar{\epsilon }^{\mu \nu \rho \sigma }
\overset{\text{}}{\epsilon }^{\mu \nu \rho \sigma }
(1-D) (2-D) (3-D) D
[LC[\[Mu], \[Nu], \[Rho], \[Sigma]]^2] Contract
-24