CartesianPair[a, b]
is a special pairing used in the
internal representation. a
and b
may have
heads CartesianIndex
or CartesianMomentum
. If
both a
and b
have head
CartesianIndex
, the Kronecker delta is understood. If
a
and b
have head
CartesianMomentum
, a Cartesian scalar product is meant. If
one of a
and b
has head
CartesianIndex
and the other
CartesianMomentum
, a Cartesian vector p^i is understood.
This represents a three-dimensional Kronecker delta
[CartesianIndex[i], CartesianIndex[j]] CartesianPair
\bar{\delta }^{ij}
This is a D-1-dimensional Kronecker delta
[CartesianIndex[i, D - 1], CartesianIndex[j, D - 1]] CartesianPair
\delta ^{ij}
If the Cartesian indices live in different dimensions, this gets resolved according to the t’Hoft-Veltman-Breitenlohner-Maison prescription
[CartesianIndex[i, D - 1], CartesianIndex[j]] CartesianPair
\bar{\delta }^{ij}
[CartesianIndex[i, D - 1], CartesianIndex[j, D - 4]] CartesianPair
\hat{\delta }^{ij}
[CartesianIndex[i], CartesianIndex[j, D - 4]] CartesianPair
0
A 3-dimensional Cartesian vector
[CartesianIndex[i], CartesianMomentum[p]] CartesianPair
\overline{p}^i
A D-1-dimensional Cartesian vector
[CartesianIndex[i, D - 1], CartesianMomentum[p, D - 1]] CartesianPair
p^i
3-dimensional scalar products of Cartesian vectors
[CartesianMomentum[q], CartesianMomentum[p]] CartesianPair
\overline{p}\cdot \overline{q}
[CartesianMomentum[p], CartesianMomentum[p]] CartesianPair
\overline{p}^2
[CartesianMomentum[p - q], CartesianMomentum[p]] CartesianPair
\overline{p}\cdot (\overline{p}-\overline{q})
[CartesianMomentum[p], CartesianMomentum[p]]^2 CartesianPair
\overline{p}^4
[CartesianMomentum[p], CartesianMomentum[p]]^3 CartesianPair
\overline{p}^6
[CartesianPair[CartesianMomentum[p - q], CartesianMomentum[p]]] ExpandScalarProduct
\overline{p}^2-\overline{p}\cdot \overline{q}
[CartesianMomentum[-q], CartesianMomentum[p]] +
CartesianPair[CartesianMomentum[q], CartesianMomentum[p]] CartesianPair
0