TensorFunction[t, mu, nu, ...]
transform into t[LorentzIndex[mu], LorentzIndex[nu], ...]
, i.e., it can be used as an unspecified tensorial function t
.
A symmetric tensor can be obtained by TensorFunction[{t, "S"}, mu, nu, ...]
, and an antisymmetric one by TensorFunction[{t, "A"}, mu, nu, ...]
.
Overview, FCSymmetrize, FCAntiSymmetrize.
[t, \[Mu], \[Nu], \[Tau]] TensorFunction
t(\mu ,\nu ,\tau )
[t, \[Mu], \[Nu], \[Tau]] // StandardForm
TensorFunction
(*t[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Tau]]]*)
[FV[p, \[Mu]] TensorFunction[t, \[Mu], \[Nu], \[Tau]]] Contract
t\left(\overline{p},\nu ,\tau \right)
[FV[p, \[Mu]] TensorFunction[t, \[Mu], \[Nu], \[Tau]]] // StandardForm
Contract
(*t[Momentum[p], LorentzIndex[\[Nu]], LorentzIndex[\[Tau]]]*)
[{f, "S"}, \[Alpha], \[Beta]] TensorFunction
f(\alpha ,\beta )
[{f, "S"}, \[Beta], \[Alpha]] // StandardForm
TensorFunction
(*f[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]]*)
Attributes[f]
ClearAttributes[f, Orderless]
\{\text{Orderless}\}