TR[exp]
calculates the Dirac trace of exp
. Depending on the setting of the option SUNTrace
also a trace over SU(N) objects is performed.
TR[list]
finds the trace of the matrix or tensor list.
TR[list, f]
finds a generalized trace, combining terms with f instead of Plus
.
TR[list, f, n]
goes down to level n
in list
.
TR[expression]
calculates the DiracTrace
, i.e., TR[expression]
if any of DiracGamma
, GA
, GAD
, GS
or GSD
is present in expression.
Overview, DiracSimplify, DiracTrace, FermionSpinSum, SUNTrace.
[\[Mu], \[Nu]]
GA
TR[%]
\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }
4 \bar{g}^{\mu \nu }
TR[(GSD[p] + m) . GAD[\[Mu]] . (GSD[q] - m) . GAD[\[Nu]]]
-4 \left(m^2 g^{\mu \nu }+g^{\mu \nu } (p\cdot q)-p^{\nu } q^{\mu }-p^{\mu } q^{\nu }\right)
TR[GA[\[Mu], \[Nu], \[Rho], \[Sigma], 5]]
-4 i \bar{\epsilon }^{\mu \nu \rho \sigma }
TR[GS[p, q, r, s]]
4 \left(\left(\overline{p}\cdot \overline{s}\right) \left(\overline{q}\cdot \overline{r}\right)-\left(\overline{p}\cdot \overline{r}\right) \left(\overline{q}\cdot \overline{s}\right)+\left(\overline{p}\cdot \overline{q}\right) \left(\overline{r}\cdot \overline{s}\right)\right)
TR[(GS[p] + m) . GA[\[Mu]] . (GS[q] + m) . GA[\[Mu]], Factoring -> True]
8 \left(2 m^2-\overline{p}\cdot \overline{q}\right)
TR[GA[\[Alpha], \[Beta]], FCE -> True]
4 \bar{g}^{\alpha \beta }
[\[Mu], \[Nu]] SUNT[b] . SUNT[c] SUNDelta[c, b]
GA
TR[%, SUNTrace -> False, SUNNToCACF -> True]
TR[%%, SUNTrace -> True, SUNNToCACF -> True]
\delta ^{bc} T^b.T^c \bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }
4 C_F \bar{g}^{\mu \nu }
4 C_F \bar{g}^{\mu \nu }
TR[1, SUNTrace -> False, SUNNToCACF -> True]
4
TR[1, SUNTrace -> True, SUNNToCACF -> True]
4