TID
TID[amp, q]
performs tensor decomposition of 1-loop
integrals with loop momentum q
.
See also
Overview , OneLoopSimplify , TIDL , PaVeLimitTo4 .
Examples
int = FAD[{ k , m }, k - Subscript [ p , 1 ], k - Subscript [ p , 2 ]] FVD[ k , \ [ Mu]] // FCI
k μ ( k 2 − m 2 ) . ( k − p 1 ) 2 . ( k − p 2 ) 2 \frac{k^{\mu
}}{\left(k^2-m^2\right).(k-p_1){}^2.(k-p_2){}^2} ( k 2 − m 2 ) . ( k − p 1 ) 2 . ( k − p 2 ) 2 k μ
By default, all tensor integrals are reduced to the Passarino-Veltman
scalar integrals A 0 A_0 A 0 , B 0 B_0 B 0 , C 0 C_0 C 0 ,
D 0 D_0 D 0 etc.
p 1 2 p 2 μ − p 1 μ ( p 1 ⋅ p 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) k 2 . ( ( k + p 1 ) 2 − m 2 ) − p 2 2 ( m 2 + p 1 2 ) p 1 μ + p 1 2 ( m 2 + p 2 2 ) p 2 μ + ( m 2 + p 1 2 ) ( − p 2 μ ) ( p 1 ⋅ p 2 ) − ( m 2 + p 2 2 ) p 1 μ ( p 1 ⋅ p 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) ( k 2 − m 2 ) . ( k − p 1 ) 2 . ( k − p 2 ) 2 − p 2 μ ( p 1 ⋅ p 2 ) − p 2 2 p 1 μ 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) k 2 . ( ( k + p 2 ) 2 − m 2 ) − p 1 2 p 2 μ + p 2 2 p 1 μ − p 1 μ ( p 1 ⋅ p 2 ) − p 2 μ ( p 1 ⋅ p 2 ) 2 k 2 . ( k − p 1 + p 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) \frac{p_1{}^2 p_2{}^{\mu }-p_1{}^{\mu }
\left(p_1\cdot p_2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2
p_2{}^2\right) k^2.\left((k+p_1){}^2-m^2\right)}-\frac{p_2{}^2
\left(m^2+p_1{}^2\right) p_1{}^{\mu }+p_1{}^2 \left(m^2+p_2{}^2\right)
p_2{}^{\mu }+\left(m^2+p_1{}^2\right) \left(-p_2{}^{\mu }\right)
\left(p_1\cdot p_2\right)-\left(m^2+p_2{}^2\right) p_1{}^{\mu }
\left(p_1\cdot p_2\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2
p_2{}^2\right)
\left(k^2-m^2\right).(k-p_1){}^2.(k-p_2){}^2}-\frac{p_2{}^{\mu }
\left(p_1\cdot p_2\right)-p_2{}^2 p_1{}^{\mu }}{2 \left((p_1\cdot
p_2){}^2-p_1{}^2 p_2{}^2\right)
k^2.\left((k+p_2){}^2-m^2\right)}-\frac{p_1{}^2 p_2{}^{\mu }+p_2{}^2
p_1{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^{\mu }
\left(p_1\cdot p_2\right)}{2 k^2.(k-p_1+p_2){}^2 \left((p_1\cdot
p_2){}^2-p_1{}^2 p_2{}^2\right)} 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) k 2 . ( ( k + p 1 ) 2 − m 2 ) p 1 2 p 2 μ − p 1 μ ( p 1 ⋅ p 2 ) − 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) ( k 2 − m 2 ) . ( k − p 1 ) 2 . ( k − p 2 ) 2 p 2 2 ( m 2 + p 1 2 ) p 1 μ + p 1 2 ( m 2 + p 2 2 ) p 2 μ + ( m 2 + p 1 2 ) ( − p 2 μ ) ( p 1 ⋅ p 2 ) − ( m 2 + p 2 2 ) p 1 μ ( p 1 ⋅ p 2 ) − 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) k 2 . ( ( k + p 2 ) 2 − m 2 ) p 2 μ ( p 1 ⋅ p 2 ) − p 2 2 p 1 μ − 2 k 2 . ( k − p 1 + p 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) p 1 2 p 2 μ + p 2 2 p 1 μ − p 1 μ ( p 1 ⋅ p 2 ) − p 2 μ ( p 1 ⋅ p 2 )
Scalar integrals can be converted to the Passarino-Veltman notation
via the option ToPaVe
TID[ int, k , ToPaVe -> True ]
i π 2 ( p 1 2 p 2 μ − p 1 μ ( p 1 ⋅ p 2 ) ) B 0 ( p 1 2 , 0 , m 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) − i π 2 ( p 2 μ ( p 1 ⋅ p 2 ) − p 2 2 p 1 μ ) B 0 ( p 2 2 , 0 , m 2 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) − i π 2 ( p 1 2 p 2 μ + p 2 2 p 1 μ − p 1 μ ( p 1 ⋅ p 2 ) − p 2 μ ( p 1 ⋅ p 2 ) ) B 0 ( p 1 2 − 2 ( p 1 ⋅ p 2 ) + p 2 2 , 0 , 0 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) − i π 2 ( p 2 2 ( m 2 + p 1 2 ) p 1 μ + p 1 2 ( m 2 + p 2 2 ) p 2 μ + ( m 2 + p 1 2 ) ( − p 2 μ ) ( p 1 ⋅ p 2 ) − ( m 2 + p 2 2 ) p 1 μ ( p 1 ⋅ p 2 ) ) C 0 ( p 1 2 , p 2 2 , p 1 2 − 2 ( p 1 ⋅ p 2 ) + p 2 2 , 0 , m 2 , 0 ) 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) \frac{i \pi ^2 \left(p_1{}^2 p_2{}^{\mu
}-p_1{}^{\mu } \left(p_1\cdot p_2\right)\right)
\;\text{B}_0\left(p_1{}^2,0,m^2\right)}{2 \left((p_1\cdot
p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_2{}^{\mu }
\left(p_1\cdot p_2\right)-p_2{}^2 p_1{}^{\mu }\right)
\;\text{B}_0\left(p_2{}^2,0,m^2\right)}{2 \left((p_1\cdot
p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_1{}^2 p_2{}^{\mu
}+p_2{}^2 p_1{}^{\mu }-p_1{}^{\mu } \left(p_1\cdot p_2\right)-p_2{}^{\mu
} \left(p_1\cdot p_2\right)\right) \;\text{B}_0\left(p_1{}^2-2
\left(p_1\cdot p_2\right)+p_2{}^2,0,0\right)}{2 \left((p_1\cdot
p_2){}^2-p_1{}^2 p_2{}^2\right)}-\frac{i \pi ^2 \left(p_2{}^2
\left(m^2+p_1{}^2\right) p_1{}^{\mu }+p_1{}^2 \left(m^2+p_2{}^2\right)
p_2{}^{\mu }+\left(m^2+p_1{}^2\right) \left(-p_2{}^{\mu }\right)
\left(p_1\cdot p_2\right)-\left(m^2+p_2{}^2\right) p_1{}^{\mu }
\left(p_1\cdot p_2\right)\right)
\;\text{C}_0\left(p_1{}^2,p_2{}^2,p_1{}^2-2 \left(p_1\cdot
p_2\right)+p_2{}^2,0,m^2,0\right)}{2 \left((p_1\cdot p_2){}^2-p_1{}^2
p_2{}^2\right)} 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) i π 2 ( p 1 2 p 2 μ − p 1 μ ( p 1 ⋅ p 2 ) ) B 0 ( p 1 2 , 0 , m 2 ) − 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) i π 2 ( p 2 μ ( p 1 ⋅ p 2 ) − p 2 2 p 1 μ ) B 0 ( p 2 2 , 0 , m 2 ) − 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) i π 2 ( p 1 2 p 2 μ + p 2 2 p 1 μ − p 1 μ ( p 1 ⋅ p 2 ) − p 2 μ ( p 1 ⋅ p 2 ) ) B 0 ( p 1 2 − 2 ( p 1 ⋅ p 2 ) + p 2 2 , 0 , 0 ) − 2 ( ( p 1 ⋅ p 2 ) 2 − p 1 2 p 2 2 ) i π 2 ( p 2 2 ( m 2 + p 1 2 ) p 1 μ + p 1 2 ( m 2 + p 2 2 ) p 2 μ + ( m 2 + p 1 2 ) ( − p 2 μ ) ( p 1 ⋅ p 2 ) − ( m 2 + p 2 2 ) p 1 μ ( p 1 ⋅ p 2 ) ) C 0 ( p 1 2 , p 2 2 , p 1 2 − 2 ( p 1 ⋅ p 2 ) + p 2 2 , 0 , m 2 , 0 )
We can force the reduction algorithm to use Passarino-Veltman
coefficient functions via the option UsePaVeBasis
TID[ int, k , UsePaVeBasis -> True ]
− i π 2 p 1 μ C 1 ( p 1 2 , p 1 2 + p 2 2 − 2 ( p 1 ⋅ p 2 ) , p 2 2 , m 2 , 0 , 0 ) − i π 2 p 2 μ C 1 ( p 2 2 , p 1 2 + p 2 2 − 2 ( p 1 ⋅ p 2 ) , p 1 2 , m 2 , 0 , 0 ) -i \pi ^2 p_1{}^{\mu }
\;\text{C}_1\left(p_1{}^2,p_1{}^2+p_2{}^2-2 \left(p_1\cdot
p_2\right),p_2{}^2,m^2,0,0\right)-i \pi ^2 p_2{}^{\mu }
\;\text{C}_1\left(p_2{}^2,p_1{}^2+p_2{}^2-2 \left(p_1\cdot
p_2\right),p_1{}^2,m^2,0,0\right) − i π 2 p 1 μ C 1 ( p 1 2 , p 1 2 + p 2 2 − 2 ( p 1 ⋅ p 2 ) , p 2 2 , m 2 , 0 , 0 ) − i π 2 p 2 μ C 1 ( p 2 2 , p 1 2 + p 2 2 − 2 ( p 1 ⋅ p 2 ) , p 1 2 , m 2 , 0 , 0 )
Very often the integral can be simplified via partial fractioning
even before performing the loop reduction. In this case the output will
contain a mixture of FAD
symbols and Passarino-Veltman
functions
TID[ SPD[ p , q ] FAD[ q , { q - p , m }] FVD[ q , mu], q , UsePaVeBasis -> True ]
p mu 2 ( q 2 − m 2 ) + 1 2 i π 2 ( m 2 − p 2 ) p mu ( ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) 2 p 2 − A 0 ( m 2 ) 2 p 2 ) \frac{p^{\text{mu}}}{2
\left(q^2-m^2\right)}+\frac{1}{2} i \pi ^2 \left(m^2-p^2\right)
p^{\text{mu}} \left(\frac{\left(m^2-p^2\right)
\;\text{B}_0\left(p^2,0,m^2\right)}{2
p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right) 2 ( q 2 − m 2 ) p mu + 2 1 i π 2 ( m 2 − p 2 ) p mu ( 2 p 2 ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) − 2 p 2 A 0 ( m 2 ) )
This can be avoided by setting both UsePaVeBasis
and
ToPaVe
to True
TID[ SPD[ p , q ] FAD[ q , { q - p , m }] FVD[ q , mu], q , UsePaVeBasis -> True , ToPaVe -> True ]
1 2 i π 2 ( m 2 − p 2 ) p mu ( ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) 2 p 2 − A 0 ( m 2 ) 2 p 2 ) + 1 2 i π 2 p mu A 0 ( m 2 ) \frac{1}{2} i \pi ^2 \left(m^2-p^2\right)
p^{\text{mu}} \left(\frac{\left(m^2-p^2\right)
\;\text{B}_0\left(p^2,0,m^2\right)}{2
p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right)+\frac{1}{2} i \pi
^2 p^{\text{mu}} \;\text{A}_0\left(m^2\right) 2 1 i π 2 ( m 2 − p 2 ) p mu ( 2 p 2 ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) − 2 p 2 A 0 ( m 2 ) ) + 2 1 i π 2 p mu A 0 ( m 2 )
Alternatively, we may set ToPaVe
to
Automatic
which will automatically invoke the
ToPaVe
function if the final result contains even a single
Passarino-Veltman function
TID[ SPD[ p , q ] FAD[ q , { q - p , m }] FVD[ q , mu], q , ToPaVe -> Automatic ]
( m 2 − p 2 ) 2 p mu 4 p 2 q 2 . ( ( q − p ) 2 − m 2 ) − ( m 2 − 3 p 2 ) p mu 4 p 2 ( q 2 − m 2 ) \frac{\left(m^2-p^2\right)^2
p^{\text{mu}}}{4 p^2 q^2.\left((q-p)^2-m^2\right)}-\frac{\left(m^2-3
p^2\right) p^{\text{mu}}}{4 p^2 \left(q^2-m^2\right)} 4 p 2 q 2 . ( ( q − p ) 2 − m 2 ) ( m 2 − p 2 ) 2 p mu − 4 p 2 ( q 2 − m 2 ) ( m 2 − 3 p 2 ) p mu
TID[ SPD[ p , q ] FAD[ q , { q - p , m }] FVD[ q , mu], q , UsePaVeBasis -> True , ToPaVe -> Automatic ]
1 2 i π 2 ( m 2 − p 2 ) p mu ( ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) 2 p 2 − A 0 ( m 2 ) 2 p 2 ) + 1 2 i π 2 p mu A 0 ( m 2 ) \frac{1}{2} i \pi ^2 \left(m^2-p^2\right)
p^{\text{mu}} \left(\frac{\left(m^2-p^2\right)
\;\text{B}_0\left(p^2,0,m^2\right)}{2
p^2}-\frac{\text{A}_0\left(m^2\right)}{2 p^2}\right)+\frac{1}{2} i \pi
^2 p^{\text{mu}} \;\text{A}_0\left(m^2\right) 2 1 i π 2 ( m 2 − p 2 ) p mu ( 2 p 2 ( m 2 − p 2 ) B 0 ( p 2 , 0 , m 2 ) − 2 p 2 A 0 ( m 2 ) ) + 2 1 i π 2 p mu A 0 ( m 2 )
The basis of Passarino-Veltman coefficient functions is used
automatically if there are zero Gram determinants
FCClearScalarProducts[] ;
SPD[ Subscript [ p , 1 ], Subscript [ p , 1 ]] = 0 ;
SPD[ Subscript [ p , 2 ], Subscript [ p , 2 ]] = 0 ;
SPD[ Subscript [ p , 1 ], Subscript [ p , 2 ]] = 0 ;
TID[ FAD[{ k , m }, k - Subscript [ p , 1 ], k - Subscript [ p , 2 ]] FVD[ k , \ [ Mu]] // FCI, k ]
FCClearScalarProducts[] ;
− i π 2 ( p 1 μ + p 2 μ ) C 1 ( 0 , 0 , 0 , 0 , 0 , m 2 ) -i \pi ^2 \left(p_1{}^{\mu }+p_2{}^{\mu
}\right) \;\text{C}_1\left(0,0,0,0,0,m^2\right) − i π 2 ( p 1 μ + p 2 μ ) C 1 ( 0 , 0 , 0 , 0 , 0 , m 2 )
In FeynCalc, Passarino-Veltman coefficient functions are defined in
the same way as in LoopTools. If one wants to use a different
definition, it is useful to activate the option GenPaVe
FCClearScalarProducts[] ;
SPD[ Subscript [ p , 1 ], Subscript [ p , 1 ]] = 0 ;
SPD[ Subscript [ p , 2 ], Subscript [ p , 2 ]] = 0 ;
SPD[ Subscript [ p , 1 ], Subscript [ p , 2 ]] = 0 ;
TID[ FAD[{ k , m }, k - Subscript [ p , 1 ], k - Subscript [ p , 2 ]] FVD[ k , \ [ Mu]] // FCI, k , GenPaVe -> True ]
FCClearScalarProducts[] ;
− i π 2 p 1 μ GenPaVe ( { 1 } , ( 0 m p 1 0 p 2 0 ) ) − i π 2 p 2 μ GenPaVe ( { 2 } , ( 0 m p 1 0 p 2 0 ) ) -i \pi ^2 p_1{}^{\mu }
\;\text{GenPaVe}\left(\{1\},\left(
\begin{array}{cc}
0 & m \\
p_1 & 0 \\
p_2 & 0 \\
\end{array}
\right)\right)-i \pi ^2 p_2{}^{\mu } \;\text{GenPaVe}\left(\{2\},\left(
\begin{array}{cc}
0 & m \\
p_1 & 0 \\
p_2 & 0 \\
\end{array}
\right)\right) − i π 2 p 1 μ GenPaVe { 1 } , 0 p 1 p 2 m 0 0 − i π 2 p 2 μ GenPaVe { 2 } , 0 p 1 p 2 m 0 0
To simplify manifestly IR-finite 1-loop results written in terms of
Passarino-Veltman functions, we may employ the option
PaVeLimitTo4
(must be used together with
ToPaVe
). The result is valid up to 0th order in
Epsilon
, i.e. sufficient for 1-loop calculations.
FCClearScalarProducts[] ;
int = (D - 1 ) (D - 2 )/ (D - 3 ) FVD[ p , mu] FVD[ p , nu] FAD[ p , p - q ]
( D − 2 ) ( D − 1 ) p mu p nu ( D − 3 ) p 2 . ( p − q ) 2 \frac{(D-2) (D-1) p^{\text{mu}}
p^{\text{nu}}}{(D-3) p^2.(p-q)^2} ( D − 3 ) p 2 . ( p − q ) 2 ( D − 2 ) ( D − 1 ) p mu p nu
TID[ int, p , ToPaVe -> True ]
i π 2 ( 2 − D ) B 0 ( q 2 , 0 , 0 ) ( D q mu q nu − q 2 g mu nu ) 4 ( 3 − D ) \frac{i \pi ^2 (2-D)
\;\text{B}_0\left(q^2,0,0\right) \left(D q^{\text{mu}} q^{\text{nu}}-q^2
g^{\text{mu}\;\text{nu}}\right)}{4 (3-D)} 4 ( 3 − D ) i π 2 ( 2 − D ) B 0 ( q 2 , 0 , 0 ) ( D q mu q nu − q 2 g mu nu )
TID[ int, p , ToPaVe -> True , PaVeLimitTo4 -> True ]
1 2 i π 2 B 0 ( q ‾ 2 , 0 , 0 ) ( 4 q ‾ mu q ‾ nu − q ‾ 2 g ˉ mu nu ) + 1 2 i π 2 ( 2 q ‾ mu q ‾ nu − q ‾ 2 g ˉ mu nu ) \frac{1}{2} i \pi ^2
\;\text{B}_0\left(\overline{q}^2,0,0\right) \left(4
\overline{q}^{\text{mu}} \overline{q}^{\text{nu}}-\overline{q}^2
\bar{g}^{\text{mu}\;\text{nu}}\right)+\frac{1}{2} i \pi ^2 \left(2
\overline{q}^{\text{mu}} \overline{q}^{\text{nu}}-\overline{q}^2
\bar{g}^{\text{mu}\;\text{nu}}\right) 2 1 i π 2 B 0 ( q 2 , 0 , 0 ) ( 4 q mu q nu − q 2 g ˉ mu nu ) + 2 1 i π 2 ( 2 q mu q nu − q 2 g ˉ mu nu )
Sometimes one would like to have external momenta multiplied by
symbolic parameters in the propagators. In this case one should first
declare the corresponding variables to be of FCVariable
type
DataType[ a , FCVariable] = True ;
DataType[ b , FCVariable] = True ;
ExpandScalarProduct[ SP[ P , Q ] /. P -> a P1 + b P2]
StandardForm [ % ]
a ( P1 ‾ ⋅ Q ‾ ) + b ( P2 ‾ ⋅ Q ‾ ) a \left(\overline{\text{P1}}\cdot
\overline{Q}\right)+b \left(\overline{\text{P2}}\cdot
\overline{Q}\right) a ( P1 ⋅ Q ) + b ( P2 ⋅ Q )
(*a Pair[Momentum[P1], Momentum[Q]] + b Pair[Momentum[P2], Momentum[Q]]*)