SimplifyPolyLog[y]
performs several simplifications assuming that the variables occuring in the Log
and PolyLog
functions are between 0
and 1
.
The simplifications will in general not be valid if the arguments are complex or outside the range between 0 and 1.
[PolyLog[2, 1/x]] SimplifyPolyLog
\zeta (2)+\text{Li}_2(1-x)-\frac{1}{2} \log ^2(x)+\log (1-x) \log (x)+i \pi \log (x)
[PolyLog[2, x]] SimplifyPolyLog
\zeta (2)-\text{Li}_2(1-x)-\log (1-x) \log (x)
[PolyLog[2, 1 - x^2]] SimplifyPolyLog
-\zeta (2)+2 \;\text{Li}_2(1-x)-2 \;\text{Li}_2(-x)-2 \log (x) \log (x+1)
[PolyLog[2, x^2]] SimplifyPolyLog
2 \zeta (2)-2 \;\text{Li}_2(1-x)+2 \;\text{Li}_2(-x)-2 \log (1-x) \log (x)
[PolyLog[2, -x/(1 - x)]] SimplifyPolyLog
-\zeta (2)+\text{Li}_2(1-x)-\frac{1}{2} \log ^2(1-x)+\log (x) \log (1-x)
[PolyLog[2, x/(x - 1)]] SimplifyPolyLog
-\zeta (2)+\text{Li}_2(1-x)-\frac{1}{2} \log ^2(1-x)+\log (x) \log (1-x)
[Nielsen[1, 2, -x/(1 - x)]] SimplifyPolyLog
S_{12}(x)-\frac{1}{6} \log ^3(1-x)
[PolyLog[3, -1/x]] SimplifyPolyLog
\text{Li}_3(-x)+\zeta (2) \log (x)+\frac{\log ^3(x)}{6}
[PolyLog[3, 1 - x]] SimplifyPolyLog
\text{Li}_3(1-x)
[PolyLog[3, x^2]] SimplifyPolyLog
4 \;\text{Li}_3(-x)-4 \;\text{Li}_2(1-x) \log (x)-4 S_{12}(1-x)+4 \zeta (2) \log (x)-2 \log (1-x) \log ^2(x)+4 \zeta (3)
[PolyLog[3, -x/(1 - x)]] SimplifyPolyLog
-\text{Li}_3(1-x)+\text{Li}_2(1-x) \log (x)+S_{12}(1-x)+\zeta (2) \log (1-x)-\zeta (2) \log (x)+\frac{1}{6} \log ^3(1-x)-\frac{1}{2} \log (x) \log ^2(1-x)+\frac{1}{2} \log ^2(x) \log (1-x)
[PolyLog[3, 1 - 1/x]] SimplifyPolyLog
\text{Li}_2(1-x) \log (x)-\text{Li}_2(1-x) \log (1-x)+S_{12}(1-x)+S_{12}(x)+\frac{\log ^3(x)}{6}-\frac{1}{2} \log ^2(1-x) \log (x)-\zeta (3)
[PolyLog[4, -x/(1 - x)]] SimplifyPolyLog
-\text{Li}_4(x)+\frac{1}{2} \;\text{Li}_2(1-x) \log ^2(1-x)-\text{Li}_2(1-x) \log (x) \log (1-x)-S_{13}(x)+S_{22}(x)-S_{12}(1-x) \log (1-x)-S_{12}(x) \log (1-x)-\frac{1}{2} \zeta (2) \log ^2(1-x)+\zeta (2) \log (x) \log (1-x)+\zeta (3) \log (1-x)-\frac{1}{24} \log ^4(1-x)+\frac{1}{2} \log (x) \log ^3(1-x)-\frac{1}{2} \log ^2(x) \log ^2(1-x)
[Log[a + b/c]] SimplifyPolyLog
\log \left(\frac{a c+b}{c}\right)
[Log[1/x]] SimplifyPolyLog
-\log (x)
[ArcTanh[x]] SimplifyPolyLog
\frac{1}{2} \log \left(-\frac{x+1}{1-x}\right)
[ArcSinh[x]] SimplifyPolyLog
\log \left(\sqrt{x^2+1}+x\right)
[ArcCosh[x]] SimplifyPolyLog
\log \left(\sqrt{x^2-1}+x\right)