QuarkGluonVertex[mu, a] gives the Feynman rule for the
quark-gluon vertex.
QGV can be used as an abbreviation of
QuarkGluonVertex.
The dimension and the name of the coupling constant are determined by
the options Dimension and
CouplingConstant.
QuarkGluonVertex[\[Mu], a, Explicit -> True]i g_s T^a.\gamma ^{\mu }
QGV[\[Mu], a]Q_a^{\mu }
Explicit[%]i g_s T^a.\gamma ^{\mu }
QuarkGluonVertex[\[Mu], a, CounterTerm -> 1, Explicit -> True]\frac{2 i g_s^3 S_n \left(C_F-\frac{C_A}{2}\right) T^a.\gamma ^{\mu }}{\varepsilon }
QuarkGluonVertex[\[Mu], a, CounterTerm -> 2, Explicit -> True]\frac{3 i C_A g_s^3 S_n T^a.\gamma ^{\mu }}{\varepsilon }
QuarkGluonVertex[\[Mu], a, CounterTerm -> 3, Explicit -> True]\frac{2 i g_s^3 S_n \left(C_A+C_F\right) T^a.\gamma ^{\mu }}{\varepsilon }
QuarkGluonVertex[{p, \[Mu], a}, {q}, {k}, OPE -> True, Explicit -> True]\Omega \Delta ^{\mu } g_s (\gamma \cdot \Delta ).T^a \left(\sum _{i=0}^{-2+m} (-1)^i (k\cdot \Delta )^i (\Delta \cdot q)^{-2-i+m}\right)+i g_s T^a.\gamma ^{\mu }
QuarkGluonVertex[{p, \[Mu], a}, {q}, {k}, OPE -> False, Explicit -> True]i g_s T^a.\gamma ^{\mu }