PauliTrick[exp]
contracts \sigma matrices with each other and performs several simplifications (no expansion, use PauliSimplify
for this).
Overview, PauliSigma, PauliSimplify.
[p1] . CSI[i] . CSIS[p2]
CSIS
[%] // Contract PauliTrick
\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)
\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)
[i, j, i]
CSID
[%] // Contract PauliTrick
\sigma ^i.\sigma ^j.\sigma ^i
-\left((D-3) \sigma ^j\right)
[p] . CSI[j] . CSIS[p] . CSIS[i]
CSIS
[%] // Contract // EpsEvaluate // FCCanonicalizeDummyIndices
PauliTrick
[%%, PauliReduce -> False] PauliTrick
\left(\overline{\sigma }\cdot \overline{p}\right).\overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)
2 \overline{p}^j \left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)-\overline{p}^2 \overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{i}\right)
2 \overline{p}^j \left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)-\overline{p}^2 \overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{i}\right)