FeynCalc manual (development version)

PauliTrick

PauliTrick[exp] contracts \sigma matrices with each other and performs several simplifications (no expansion, use PauliSimplify for this).

See also

Overview, PauliSigma, PauliSimplify.

Examples

CSIS[p1] . CSI[i] . CSIS[p2] 
 
PauliTrick[%] // Contract

\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)

\left(\overline{\sigma }\cdot \overline{\text{p1}}\right).\overline{\sigma }^i.\left(\overline{\sigma }\cdot \overline{\text{p2}}\right)

CSID[i, j, i] 
 
PauliTrick[%] // Contract

\sigma ^i.\sigma ^j.\sigma ^i

-\left((D-3) \sigma ^j\right)

CSIS[p] . CSI[j] . CSIS[p] . CSIS[i] 
 
PauliTrick[%] // Contract // EpsEvaluate // FCCanonicalizeDummyIndices 
 
PauliTrick[%%, PauliReduce -> False]

\left(\overline{\sigma }\cdot \overline{p}\right).\overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)

2 \overline{p}^j \left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)-\overline{p}^2 \overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{i}\right)

2 \overline{p}^j \left(\overline{\sigma }\cdot \overline{p}\right).\left(\overline{\sigma }\cdot \overline{i}\right)-\overline{p}^2 \overline{\sigma }^j.\left(\overline{\sigma }\cdot \overline{i}\right)