MTLP[mu,nu,n,nb]
denotes the positive component in the lightcone decomposition of the metric tensor g^{\mu \nu} along the vectors n
and nb
. It corresponds to \frac{1}{2} \bar{n}^{\mu} n^\nu.
If one omits n
and nb
, the program will use default vectors specified via $FCDefaultLightconeVectorN
and $FCDefaultLightconeVectorNB
.
Overview, Pair, FVLP, FVLN, FVLR, SPLP, SPLN, SPLR, MTLN, MTLR.
[\[Mu], \[Nu], n, nb] MTLP
\frac{1}{2} \overline{n}^{\nu } \overline{\text{nb}}^{\mu }
StandardForm[MTLP[\[Mu], \[Nu], n, nb] // FCI]
\frac{1}{2} \;\text{Pair}[\text{LorentzIndex}[\mu ],\text{Momentum}[\text{nb}]] \;\text{Pair}[\text{LorentzIndex}[\nu ],\text{Momentum}[n]]
Notice that the properties of n
and nb
vectors have to be set by hand before doing the actual computation
[\[Mu], \[Nu], n, nb] FV[p, \[Mu]] // Contract MTLP
\frac{1}{2} \overline{n}^{\nu } \left(\overline{\text{nb}}\cdot \overline{p}\right)
[\[Mu], \[Nu], n, nb] FV[p, \[Nu]] // Contract MTLP
\frac{1}{2} \overline{\text{nb}}^{\mu } \left(\overline{n}\cdot \overline{p}\right)
[\[Mu], \[Nu], n, nb] FV[n, \[Nu]] // Contract MTLP
\frac{1}{2} \overline{n}^2 \overline{\text{nb}}^{\mu }
[]
FCClearScalarProducts[n] = 0;
SP[nb] = 0;
SP[n, nb] = 2; SP
[\[Mu], \[Nu], n, nb] FV[n, \[Nu]] // Contract MTLP
0
[] FCClearScalarProducts