FeynCalc manual (development version)

LeviCivita

LeviCivita[mu, nu, rho, si] is an input function for the totally antisymmetric Levi-Civita tensor. It evaluates automatically to the internal representation Eps[LorentzIndex[mu], LorentzIndex[nu], LorentzIndex[rho], LorentzIndex[si]] (or with a second argument in LorentzIndex for the Dimension, if the option Dimension of LeviCivita is changed).

LeviCivita[mu , nu, ...][p, ...] evaluates to Eps[LorentzIndex[mu], LorentzIndex[nu], ..., Momentum[p], ...].

The shortcut LeviCivita is deprecated, please use LC instead!

See also

Overview, LC, FCI.

Examples

LeviCivita[\[Alpha], \[Beta], \[Gamma], \[Delta]]

\bar{\epsilon }^{\alpha \beta \gamma \delta }

LeviCivita[][p, q, r, s]

\bar{\epsilon }^{\overline{p}\overline{q}\overline{r}\overline{s}}

LeviCivita[\[Alpha], \[Beta]][p, q]

\bar{\epsilon }^{\alpha \beta \overline{p}\overline{q}}

LeviCivita[\[Alpha], \[Beta]][p, q] // StandardForm

(*Eps[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]], Momentum[p], Momentum[q]]*)

LeviCivita is scheduled for removal in the future versions of FeynCalc. The safe alternative is to use LC.

LC[\[Alpha], \[Beta], \[Gamma], \[Delta]]

\bar{\epsilon }^{\alpha \beta \gamma \delta }

LC[][p, q, r, s]

\bar{\epsilon }^{\overline{p}\overline{q}\overline{r}\overline{s}}

LC[\[Alpha], \[Beta]][p, q]

\bar{\epsilon }^{\alpha \beta \overline{p}\overline{q}}

LCD[\[Alpha], \[Beta], \[Gamma], \[Delta]]

\overset{\text{}}{\epsilon }^{\alpha \beta \gamma \delta }

LCD[][p, q, r, s]

\overset{\text{}}{\epsilon }^{pqrs}

LCD[\[Alpha], \[Beta]][p, q]

\overset{\text{}}{\epsilon }^{\alpha \beta pq}

FCI[LC[\[Alpha], \[Beta], \[Gamma], \[Delta]]] === LeviCivita[\[Alpha], \[Beta], \[Gamma], \[Delta]]

\text{True}

FCI[LCD[\[Alpha], \[Beta], \[Gamma], \[Delta]]] === LeviCivita[\[Alpha], \[Beta], \[Gamma], \[Delta], Dimension -> D]

\text{True}