FeynCalc manual (development version)

Lagrangian

Lagrangian["oqu"] gives the unpolarized OPE quark operator.

Lagrangian["oqp"] gives the polarized quark OPE operator.

Lagrangian["ogu"] gives the unpolarized gluon OPE operator.

Lagrangian["ogp"] gives the polarized gluon OPE operator.

Lagrangian["ogd"] gives the sigma-term part of the QCD Lagrangian.

Lagrangian["QCD"] gives the gluon self interaction part of the QCD Lagrangian.

See also

Overview, FeynRule.

Examples

Lagrangian["QCD"]

14FFCGV(α)FCGV(β)FCGV(a).FFCGV(α)FCGV(β)FCGV(a)-\frac{1}{4} F_{\text{FCGV}(\alpha )\text{FCGV}(\beta )}^{\text{FCGV}(\text{a})}.F_{\text{FCGV}(\alpha )\text{FCGV}(\beta )}^{\text{FCGV}(\text{a})}

Twist-2 operator product expansion operators

Lagrangian["ogu"]

12im1FFCGV(α)ΔFCGV(a).(DΔFCGV(a)FCGV(b))m2.FFCGV(α)ΔFCGV(b)\frac{1}{2} i^{m-1} F_{\text{FCGV}(\alpha )\Delta }^{\text{FCGV}(\text{a})}.\left(D_{\Delta }^{\text{FCGV}(\text{a})\text{FCGV}(\text{b})}\right){}^{m-2}.F_{\text{FCGV}(\alpha )\Delta }^{\text{FCGV}(\text{b})}

Lagrangian["ogp"]

12imϵˉFCGV(α)FCGV(β)FCGV(γ)Δ.FFCGV(β)FCGV(γ)FCGV(a).(DΔFCGV(a)FCGV(b))m2.FFCGV(α)ΔFCGV(b)\frac{1}{2} i^m \bar{\epsilon }^{\text{FCGV}(\alpha )\text{FCGV}(\beta )\text{FCGV}(\gamma )\Delta }.F_{\text{FCGV}(\beta )\text{FCGV}(\gamma )}^{\text{FCGV}(\text{a})}.\left(D_{\Delta }^{\text{FCGV}(\text{a})\text{FCGV}(\text{b})}\right){}^{m-2}.F_{\text{FCGV}(\alpha )\Delta }^{\text{FCGV}(\text{b})}

Lagrangian["oqu"]

imψˉ.(γˉΔ).DΔm1.ψi^m \bar{\psi }.\left(\bar{\gamma }\cdot \Delta \right).D_{\Delta }{}^{m-1}.\psi

Lagrangian["oqp"]

imψˉ.γˉ5.(γˉΔ).DΔm1.ψi^m \bar{\psi }.\bar{\gamma }^5.\left(\bar{\gamma }\cdot \Delta \right).D_{\Delta }{}^{m-1}.\psi