FeynCalc manual (development version)

 

Internal vs. External Representations

See also

Overview.

FeynCalcInternal

The internal representation (FeynCalcIntenral or FCI) is how FeynCalc internally “sees” the objects. For example, a 4-dimensional 4-vector is represented by

Pair[LorentzIndex[\[Mu]], Momentum[p]]

\overline{p}^{\mu }

Pair is one of the most basic FeynCalc objects. Depending on its arguments, it can represent a 4-vector, a metric tensor

Pair[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]]

\bar{g}^{\mu \nu }

or a scalar product of two 4-vectors

Pair[Momentum[p], Momentum[q]]

\overline{p}\cdot \overline{q}

Another essential object is DiracGamma that is used to represent Dirac matrices. An uncontracted Dirac matrix is

DiracGamma[LorentzIndex[\[Mu]]]

\bar{\gamma }^{\mu }

and for a Feynman slash we use

DiracGamma[Momentum[p]]

\bar{\gamma }\cdot \overline{p}

The Levi-Civita-Tensor is

Eps[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]

\bar{\epsilon }^{\mu \nu \rho \sigma }

or, when contracted with 4-momenta

Eps[Momentum[p1], Momentum[p2], Momentum[q1], Momentum[q2]]

\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p2}}\;\overline{\text{q1}}\;\overline{\text{q2}}}

This notation (momenta in the index slots) is also used in many other tools (e.g. FORM). The advantage is, that we do not need to canonicalize the indices of the Levi-Civita-Tensor, e.g. to ensure that

diff = Eps[LorentzIndex[\[Mu]], Momentum[p2], Momentum[q1], Momentum[q2]] Pair[LorentzIndex[\[Mu]], Momentum[p1]] - 
   Eps[LorentzIndex[\[Nu]], Momentum[p2], Momentum[q1], Momentum[q2]] Pair[LorentzIndex[\[Nu]], Momentum[p1]]

\overline{\text{p1}}^{\mu } \bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{q1}}\;\overline{\text{q2}}}-\overline{\text{p1}}^{\nu } \bar{\epsilon }^{\nu \overline{\text{p2}}\;\overline{\text{q1}}\;\overline{\text{q2}}}

diff // Contract

0

is zero.

FeynCalcExternal

The internal representation is useful for the internal programming FeynCalc, but obviously too cumbersome for the user input. This is why FeynCalc also has an external representation (FeynCalcExternal or FCE), that is concise and convenient.

Let us start with the 4-vector. In the FCE-notation it is just FV (“FourVector”)

FV[p, \[Mu]]

\overline{p}^{\mu }

It is not hard to guess that the scalar product is SP

SP[p, q]

\overline{p}\cdot \overline{q}

while for the metric tensor we write MT

MT[\[Mu], \[Nu]]

\bar{g}^{\mu \nu }

To input a Dirac matrix or a Feynman slash, use GA or GS respectively

GA[\[Mu]]

\bar{\gamma }^{\mu }

GS[p]

\bar{\gamma }\cdot \overline{p}

The Levi-Civita tensor is LC

LC[\[Mu], \[Nu], \[Rho], \[Sigma]]

\bar{\epsilon }^{\mu \nu \rho \sigma }

The fully contracted form is entered via

LC[][p1, p2, q1, q2]

\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p2}}\;\overline{\text{q1}}\;\overline{\text{q2}}}

It is also possible to enter a mixed form

LC[\[Mu]][p1, p2, q]

\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p2}}\overline{q}}

LC[\[Mu], \[Nu]][p1, p2]

\bar{\epsilon }^{\mu \nu \overline{\text{p1}}\;\overline{\text{p2}}}

Switching between the representations

To convert between the two representations we use the functions FCI and FCE, which are shortcuts for FeynCalcInternal and FeynCalcExternal. One cannot distinguish between the notations using the typesetting, i.e. when we see a typeset object in the TraditionalForm, we cannot really tell if it is in the FCI or FCE notation.

ex1 = FV[p, \[Mu]]
ex2 = Pair[Momentum[p], LorentzIndex[\[Mu]]]

\overline{p}^{\mu }

\overline{p}^{\mu }

However, we can always use StandardForm to see the difference

ex1 // StandardForm
ex2 // StandardForm

(*FV[p, \[Mu]]*)

(*Pair[LorentzIndex[\[Mu]], Momentum[p]]*)

Why it matters

All FeynCalc functions that are meant for users will automatically convert the user input in the FCE notation into the FCI notation. You do not have to do it by yourself.

On the other hand, virtually all FeynCalc functions produce their output in the FCI form. So when you have an expression that was obtained from FeynCalc and want to apply some replacement rules to it, we have to use the FCI form in the rule

ex = Pair[Momentum[p], Momentum[q]]

\overline{p}\cdot \overline{q}

No surprise that following does not work

ex /. SP[p, q] -> 1

\overline{p}\cdot \overline{q}

But if we wrap the r.h.s of the rule with FCI, then everything is fine

ex /. FCI[SP[p, q]] -> 1

1