FourDivergence[exp, FV[p, mu]]
calculates the partial derivative of exp w.r.t p^{\mu }. FourDivergence[exp, FV[p, mu], FV[p,nu], ...]
gives the multiple derivative.
[p, q]
SP
[%, FV[q, \[Mu]]] FourDivergence
\overline{p}\cdot \overline{q}
\overline{p}^{\mu }
[p - k, q]
SP
[%, FV[k, \[Mu]]] FourDivergence
(\overline{p}-\overline{k})\cdot \overline{q}
-\overline{q}^{\mu }
[{p, m^2}]
SFAD
[%, FVD[p, \[Nu]]] FourDivergence
\frac{1}{(p^2-m^2+i \eta )}
-\frac{2 p^{\nu }}{(p^2-m^2+i \eta )^2}
[l, \[Mu]] FAD[{l, 0}, {l - p, 0}]
FVD
[%, FVD[l, \[Mu]]] FourDivergence
\frac{l^{\mu }}{l^2.(l-p)^2}
\frac{D}{l^2.(l-p)^2}-\frac{2 l^2}{\left(l^2\right)^2.(l-p)^2}+\frac{2 (l\cdot p)-2 l^2}{l^2.(l-p)^4}
[p, w]*SpinorUBar[p2, m] . GS[w] . SpinorU[p1, m]
SP
[%, FV[w, a]] FourDivergence
\left(\overline{p}\cdot \overline{w}\right) \bar{u}(\text{p2},m).\left(\bar{\gamma }\cdot \overline{w}\right).u(\text{p1},m)
\left(\overline{p}\cdot \overline{w}\right) \left(\varphi (\overline{\text{p2}},m)\right).\bar{\gamma }^a.\left(\varphi (\overline{\text{p1}},m)\right)+\overline{p}^a \left(\varphi (\overline{\text{p2}},m)\right).\left(\bar{\gamma }\cdot \overline{w}\right).\left(\varphi (\overline{\text{p1}},m)\right)
Differentiation of 4-vectors living in different dimensions (4, D, D-4) works only in the t’Hooft-Veltman scheme
[FVD[p, mu], FV[p, nu]] FourDivergence
\text{\$Aborted}
["BMHV"]; FCSetDiracGammaScheme
[FVD[p, mu], FV[p, nu]] FourDivergence
\bar{g}^{\text{mu}\;\text{nu}}