FeynCalc manual (development version)

FeynCalcInternal

FeynCalcInternal[exp] translates exp into the internal FeynCalc (abstract data-type) representation.

See also

Overview, FeynCalcExternal, FCI, FCE.

Examples

ex = {GA[\[Mu]], GAD[\[Rho]], GS[p], SP[p, q], MT[\[Alpha], \[Beta]], FV[p, \[Mu]]}

{γˉμ,γρ,γˉp,pq,gˉαβ,pμ}\left\{\bar{\gamma }^{\mu },\gamma ^{\rho },\bar{\gamma }\cdot \overline{p},\overline{p}\cdot \overline{q},\bar{g}^{\alpha \beta },\overline{p}^{\mu }\right\}

ex // StandardForm

(*{GA[\[Mu]], GAD[\[Rho]], GS[p], SP[p, q], MT[\[Alpha], \[Beta]], FV[p, \[Mu]]}*)
ex // FeynCalcInternal

{γˉμ,γρ,γˉp,pq,gˉαβ,pμ}\left\{\bar{\gamma }^{\mu },\gamma ^{\rho },\bar{\gamma }\cdot \overline{p},\overline{p}\cdot \overline{q},\bar{g}^{\alpha \beta },\overline{p}^{\mu }\right\}

ex // StandardForm

(*{GA[\[Mu]], GAD[\[Rho]], GS[p], SP[p, q], MT[\[Alpha], \[Beta]], FV[p, \[Mu]]}*)
FeynCalcExternal[ex] // StandardForm

(*{GA[\[Mu]], GAD[\[Rho]], GS[p], SP[p, q], MT[\[Alpha], \[Beta]], FV[p, \[Mu]]}*)
ex = FCI[{SD[a, b], SUND[a, b, c], SUNF[a, b, c], FAD[q], LC[\[Mu], \[Nu], \[Rho], \[Sigma]]}]

{δab,dabc,fabc,1q2,ϵˉμνρσ}\left\{\delta ^{ab},d^{abc},f^{abc},\frac{1}{q^2},\bar{\epsilon }^{\mu \nu \rho \sigma }\right\}

ex // StandardForm

(*{SUNDelta[SUNIndex[a], SUNIndex[b]], SUND[SUNIndex[a], SUNIndex[b], SUNIndex[c]], SUNF[SUNIndex[a], SUNIndex[b], SUNIndex[c]], FeynAmpDenominator[PropagatorDenominator[Momentum[q, D], 0]], Eps[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]], LorentzIndex[\[Rho]], LorentzIndex[\[Sigma]]]}*)