Factor3[exp]
factors a rational function exp
over the field of complex numbers.
Factor3
is primarily meant to be used on matrices from differential equations and Feynman parametric representations of loop integrals. Its main goal is to rewrite all denominators such, that they can be integrated in terms of HPLs or GPLs (when possible).
To avoid performance bottlenecks, in the case of rational functions only the denominator will be factored by default. This can be changed by setting the option Numerator
to True
.
Overview, FCPartialFractionForm.
[(1 - 4 x) (1 + 3 y)] Factor3
-12 \left(x-\frac{1}{4}\right) \left(y+\frac{1}{3}\right)
[16*(1 - 2*eps)^2*x^2] Factor3
64 \left(\text{eps}-\frac{1}{2}\right)^2 x^2
[2*(32904490323 + 164521613783*eps + 1256744*eps^2)*(11 - 5*eps - 47*eps^2 + 44*eps^3)] Factor3
110593472 \left(\text{eps}+\frac{1}{264} \left(1-i \sqrt{3}\right) \sqrt[3]{-137143+198 i \sqrt{122615}}+\frac{2869 \left(1+i \sqrt{3}\right)}{264 \sqrt[3]{-137143+198 i \sqrt{122615}}}-\frac{47}{132}\right) \left(\text{eps}+\frac{1}{264} \left(1+i \sqrt{3}\right) \sqrt[3]{-137143+198 i \sqrt{122615}}+\frac{2869 \left(1-i \sqrt{3}\right)}{264 \sqrt[3]{-137143+198 i \sqrt{122615}}}-\frac{47}{132}\right) \left(\text{eps}-\frac{628374}{-1570927-\sqrt{2467796558401}}\right) \left(\text{eps}-\frac{104729 \left(-1570927-\sqrt{2467796558401}\right)}{2513488}\right) \left(\text{eps}+\frac{1}{132} \left(-47-\frac{2869}{\sqrt[3]{-137143+198 i \sqrt{122615}}}-\sqrt[3]{-137143+198 i \sqrt{122615}}\right)\right)
= {{(2 - 2*eps)/x, 0, 0, 0, 0}, {0, (2 - 2*eps)/(2*x), 0, 0, 0},
mat {0, (-2 + 2*eps)/(x - 4*x^2), (6 - 2*(4 - 2*eps))/(1 - 4*x), 0, 0},
{(-2 + 2*eps)/(x - 4*x^2), 0, 0, (2 - 2*eps + 4*(5 - 2*(4 - 2*eps))*x)/(2*(1 -
4*x)*x), 0}, {(2 - 2*eps)^2/(16*(1 - x)*x^2), -1/8*(2 - 2*eps)^2/((1 - x)*x^2),
0, 0, -((7 - 2*(4 - 2*eps) - 13*x + 4*(4 - 2*eps)*x)/(2*x - 2*x^2))}};
[mat] Factor3
\left( \begin{array}{ccccc} \frac{2-2 \;\text{eps}}{x} & 0 & 0 & 0 & 0 \\ 0 & \frac{2-2 \;\text{eps}}{2 x} & 0 & 0 & 0 \\ 0 & -\frac{2 \;\text{eps}-2}{4 \left(x-\frac{1}{4}\right) x} & -\frac{6-2 (4-2 \;\text{eps})}{4 \left(x-\frac{1}{4}\right)} & 0 & 0 \\ -\frac{2 \;\text{eps}-2}{4 \left(x-\frac{1}{4}\right) x} & 0 & 0 & -\frac{4 (5-2 (4-2 \;\text{eps})) x-2 \;\text{eps}+2}{8 \left(x-\frac{1}{4}\right) x} & 0 \\ -\frac{(2-2 \;\text{eps})^2}{16 (x-1) x^2} & \frac{(2-2 \;\text{eps})^2}{8 (x-1) x^2} & 0 & 0 & -\frac{-4 (4-2 \;\text{eps}) x+2 (4-2 \;\text{eps})+13 x-7}{2 (x-1) x} \\ \end{array} \right)